Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(25): e2301620120, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307475

RESUMEN

Directional radiation and scattering play an essential role in light manipulation for various applications in integrated nanophotonics, antenna and metasurface designs, quantum optics, etc. The most elemental system with this property is the class of directional dipoles, including the circular dipole, Huygens dipole, and Janus dipole. A unified realization of all three dipole types and a mechanism to freely switch among them are previously unreported, yet highly desirable for developing compact and multifunctional directional sources. Here, we theoretically and experimentally demonstrate that the synergy of chirality and anisotropy can give rise to all three directional dipoles in one structure at the same frequency under linearly polarized plane wave excitations. This mechanism enables a simple helix particle to serve as a directional dipole dice (DDD), achieving selective manipulation of optical directionality via different "faces" of the particle. We employ three "faces" of the DDD to realize face-multiplexed routing of guided waves in three orthogonal directions with the directionality determined by spin, power flow, and reactive power, respectively. This construction of the complete directionality space can enable high-dimensional control of both near-field and far-field directionality with broad applications in photonic integrated circuits, quantum information processing, and subwavelength-resolution imaging.

2.
Opt Express ; 31(18): 28929-28938, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710701

RESUMEN

Exceptional points (EPs)-non-Hermitian degeneracies at which eigenvalues and eigenvectors coalesce-can give rise to many intriguing phenomena in optical systems. Here, we report a study of the optical forces on chiral particles in a non-Hermitian system at EPs. The EPs are achieved by employing the unidirectional coupling of the chiral particles sitting on a dielectric waveguide under the excitation of a linearly polarized plane wave. Using full-wave numerical simulations, we demonstrate that the structure can give rise to enhanced optical forces at the EPs. Higher order EPs in general can induce stronger optical forces. In addition, the optical forces exhibit an intriguing "skin effect": the force approaches the maximum for the chiral particle at one end of the lattice. The results contribute to the understanding of optical forces in non-Hermitian systems and can find applications in designing novel optical tweezers for on-chip manipulations of chiral particles.

3.
Opt Express ; 30(23): 42495-42503, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366702

RESUMEN

Optical systems at non-Hermitian exceptional points (EPs) have intriguing properties that promise novel applications in light manipulations. Here, we realize an arbitrary order exceptional surface (ES), i.e., a surface of arbitrary order EPs, in chiral particles that couple with each other via the photonic spin-orbit interaction mediated by a dielectric waveguide. The chirality of the particles enables selective excitation of the chiral dipole modes by linearly polarized light. The unidirectional coupling of the chiral dipole modes gives rise to the ES in the parameter space defined by the material loss and coupling distance of the particles. We apply the system to realize a light funnel that can convert free-space plane waves to guided waves and funnel the incident light energy into a ring resonator. The results can find applications in designing optical switches, on-chip conversion of guided waves, and harvest of light energy.

4.
Opt Express ; 30(15): 27993-28002, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236956

RESUMEN

Nonreciprocal optical devices have broad applications in light manipulations for communications and sensing. Non-magnetic mechanisms of optical nonreciprocity are highly desired for high-frequency on-chip applications. Here, we investigate the nonreciprocal properties of light propagation in a dielectric waveguide induced by a subwavelength spinning cylinder. We find that the chiral modes of the cylinder can give rise to unidirectional coupling with the waveguide via the transverse spin-orbit interaction, leading to different transmissions for guided wave propagating in opposite directions and thus optical isolation. We reveal the dependence of the nonreciprocal properties on various system parameters including mode order, spinning speed, coupling distance, and various losses. The results show that higher-order chiral modes and larger spinning speed generally give rise to stronger nonreciprocity, and there exists an optimal cylinder-waveguide coupling distance where the optical isolation reaches the maximum. The properties are sensitive to the material loss of the cylinder but show robustness against surface-roughness-induced loss in the waveguide. Our work contributes to the understanding of nonreciprocity in subwavelength moving structures and can find applications in integrated photonic circuits, topological photonics, and novel metasurfaces.

5.
Opt Express ; 29(19): 29720-29729, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614711

RESUMEN

Exceptional points (EPs), i.e., non-Hermitian degeneracies at which eigenvalues and eigenvectors coalesce, can be realized by tuning the gain/loss contrast of different modes in non-Hermitian systems or by engineering the asymmetric coupling of modes. Here we demonstrate a mechanism that can achieve EPs of arbitrary order by employing the non-reciprocal coupling of spinning cylinders sitting on a dielectric waveguide. The spinning motion breaks the time-reversal symmetry and removes the degeneracy of opposite chiral modes of the cylinders. Under the excitation of a linearly polarized plane wave, the chiral mode of one cylinder can unidirectionally couple to the same mode of the other cylinder via the spin-orbit interaction associated with the evanescent wave of the waveguide. The structure can give rise to arbitrary-order EPs that are robust against spin-flipping perturbations, in contrast to conventional systems relying on spin-selective excitations. In addition, we show that higher-order EPs in the proposed system are accompanied by enhanced optical isolation, which may find applications in designing novel optical isolators, nonreciprocal optical devices, and topological photonics.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2200-6, 2016 Jul.
Artículo en Zh | MEDLINE | ID: mdl-30035984

RESUMEN

With respect to the problem of long period and low precision in using traditional methods to predict rice seeds germination rate, a novel method based on continuous polarization spectroscopy was proposed to achieve rapid and nondestructive prediction .The paper set different aging rice seeds as prediction targets and ten minutes as prediction time, using polarizer to modulate optical fiber collimating light source to linearly polarized light which issuing into rice seeds extract vertically before rotating the analyser every 5 degrees . The transmission spectrum was predicted through the optical fiber spectrometer. After normalization pretreatment to the polarization spectrum, the article gave the characteristics of polarization angel and wavelength by 0 degree, 5 degrees, 25 degrees, 620, 788 and 576 nm according to the contribution of polarization angel and wavelength when predicting different germination rate rice seeds and inputted obtained continuous polarization spectrum by wavelength, polarization angel, transmissivity to construct rice seeds germination rate prediction model using three modeling methods to build rice seeds germination rate prediction model in comparison, including Partial Least Squares Regression (PLSR), Back Propagation Neural Network (BPNN) and Radial Basis Function Neural Network (RBFNN).1 520 sets of experimental data were measured in total at different polarization angels through using rice seeds with different aging days (0, 2, 4, 6) respectively, setting 912 sets of data as calibration set and 608 sets of data as predicion set. The modeling results show that RBF model's prediction accuracy is the highest. Its correlation coefficient is 0.976; the mean square is 0.785; and the average relative error is 0.85%. The research results show that the continuous polarization spectroscopy technique through multidimension spectral information can achieve rapid and accurate prediction of rice seeds germination rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA