RESUMEN
BACKGROUND: The present study aims to evaluate the postprocessing image quality of a deep-learning (DL)-based automatic bone removal algorithm in the real clinical practice for cervical computed tomography angiography (CTA). MATERIALS AND METHODS: A total of 100 patients (31 females, 61.4 ± 12.4 years old) who had performed cervical CTA from January 2022 to July 2022 were included retrospectively. Three different types of scanners were used. Ipsilateral cervical artery was divided into 10 segments. The performance of the DL algorithm and conventional algorithm in terms of bone removal and vascular integrity was independently evaluated by two radiologists for each segment. The difference in the performance between the two algorithms was compared. Inter- and intrarater consistency were assessed, and the correlation between the degree of carotid artery stenosis and the rank of bone removal and vascular integrity was analyzed. RESULTS: Significant differences were observed in the rankings of bone removal and vascular integrity between the two algorithms on most segments on both sides. Compared to DL algorithm, the conventional algorithm showed a higher correlation between the degree of carotid artery stenosis and vascular integrity (r = -0.264 vs r = -0.180). The inter- and intrarater consistency of DL algorithm were found to be higher than or equal to those of conventional algorithm. CONCLUSIONS: The DL algorithm for bone removal in cervical CTA demonstrated significantly better performance than conventional postprocessing method, particularly in the segments with complex anatomical structures and adjacent to bone.
RESUMEN
Glaucoma is a common eye condition characterized by the loss of retinal ganglion cells and their axons, optic nerve damage, and visual field defects, which seriously affect a patient's quality of life. The pathogenesis of glaucoma is still unclear at present. It presents as damage to retinal ganglion cells, and the main treatment is primarily to reduce intraocular pressure by surgery or taking medication. However, even with well-controlled intraocular pressure, retinal ganglion cells still undergo degeneration, progressive apoptosis, and axonal loss. Therefore, protecting the optic nerve and inhibiting the apoptosis of retinal ganglion cells are the current hot topic for prevention and treatment of glaucoma. Recently, Erigeron breviscapus, originating from Yunnan province in China, has been shown to be a promising herb with neuroprotective effects to treat glaucoma. Therefore, the traditional usage, botanical characteristics, and phytochemical composition of E. breviscapus were explored through a literature review. Furthermore, we have summarized the pharmacological mechanisms of E. breviscapus and its active components in inhibiting the apoptosis of retinal ganglion cells. These research findings can not only provide guidance and recommendations for the protection of retinal ganglion cells but also further explore the potential of E. breviscapus in the treatment of glaucoma.
Asunto(s)
Erigeron , Glaucoma , Fármacos Neuroprotectores , Nervio Óptico , Células Ganglionares de la Retina , Glaucoma/tratamiento farmacológico , Humanos , Erigeron/química , Células Ganglionares de la Retina/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Nervio Óptico/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéuticoRESUMEN
In this study, novel amphiphilic polymer emulsifiers for avermectin (Avm) were synthesized facilely via the hydrolysis of ethylene-maleic anhydride copolymer (EMA) with different agents, and their structures were confirmed by various techniques. Then, water-based Avm-nanoemulsions were fabricated with the emulsifiers via phase inversion emulsification process, and superior emulsifier was selected via the emulsification effects. Using the superior emulsifier, an optimal Avm-nanoemulsion (defined as Avm@HEMA) with satisfying particle size of 156.8 ± 4.9 nm, encapsulation efficiency (EE) of 69.72 ± 4.01% and drug loading capacity (DLC) of 54.93 ± 1.12% was constructed based on response surface methodology (RSM). Owing to the emulsifier, the Avm@HEMA showed a series of advantages, including high stability, ultraviolet resistance, low surface tension, good spreading and high affinity to different leaves. Additionally, compared to pure Avm and Avm-emulsifiable concentrate (Avm-EC), Avm@HEMA displayed a controlled releasing feature. The encapsulated Avm was released quite slowly at normal conditions (pH 7.0, 25 °C or 15 °C) but could be released at an accelerated rate in weak acid (pH 5.5) or weak alkali (pH 8.5) media or at high temperature (40 °C). The drug releasing profiles of Avm@HEMA fit the Korsmeyer-Peppas model quite well at pH 7.0 and 25 °C (controlled by Fickian diffusion) and at pH 7.0 and 10 °C (controlled by non-Fickian diffusion), while it fits the logistic model under other conditions (pH 5.5 and 25 °C, pH 8.5 and 25 °C, pH 7.0 and 40 °C).
RESUMEN
In visual working memory (VWM) tasks, participants' performances can be improved through the use of dimension-based retro-cues, which direct internal attention to prioritize a particular dimension (e.g., color or orientation) of VWM representations even after the stimuli disappear. This phenomenon is known as the dimension-based retro-cue benefit (RCB). The present study investigates whether sustained attention is required for the dimension-based RCB by inserting interference or interruption between the retro-cue and the test array to distract attention. We tested the effects of perceptual interference or cognitive interruption on dimension-based RCB when the interference (Experiments 1 and 2 with masks) or interruption (Experiments 3 and 4 with an odd-even task) occurred concurrently with the stages for the maintenance of prioritized information (long cue-and-interference/interruption interstimulus interval, e.g., Experiments 1 and 3) or the deployment of attention (short cue-and-interference/interruption interstimulus interval, e.g., Experiments 2 and 4). Our results demonstrate that perceptual interference or cognitive interruption attenuates the dimension-based RCB. These findings suggest that sustained attention is necessary for the effective prioritization of a specific dimension of VWM representations.
Asunto(s)
Señales (Psicología) , Memoria a Corto Plazo , Humanos , Percepción VisualRESUMEN
The novel coronavirus disease 2019 (COVID-19) vaccination is now an essential strategy for controlling the COVID-19 epidemic. This study included 132 cases of adverse skin reactions after the injection of COVID-19 vaccination from January 2021 to January 2022. The rate of adverse skin reactions after the 1st, 2nd, and 3rd doses of the COVID-19 vaccine were 52%, 40%, and 8% of total adverse skin reactions, respectively. The Urticaria-like rash was the most common manifestation of all adverse skin reactions, accounting for 40.15% of all adverse reactions. The Eczema-like rash was 27.27%. The rates of adverse skin reactions after vaccination with the COVID-19 vaccine in patients with a previous skin disease was 12.12%. Other rare skin adverse reactions after COVID-19 vaccination included herpes zoster, pityriasis rosea, erythema multiforme, chickenpox, herpes simplex, psoriasis, erythrodermatitis, arthus reaction, lichen planus recurrence, measles-like rash, frostbite rash, seborrhea, and vitiligo. There were 23 cases of adverse skin reactions in the same individual after two doses of COVID-19 vaccine. There were three cases of adverse skin reactions in the same person after three doses of the vaccine. Treatment measures are mostly mild regimens, such as oral antihistamines, compounded glycopyrrolate and topical weak to moderately potent corticosteroid creams. The total duration of these skin adverse reactions ranged from 2 weeks to 1 month.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Exantema , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Exantema/inducido químicamente , Exantema/diagnóstico , Exantema/epidemiología , Vacunación/efectos adversosRESUMEN
EAR (Ethylene-responsive element binding factor-associated Amphiphilic Repression) motif-containing transcription repressors have been shown to regulate plant growth and development, and plant responses to plant hormones and environmental stresses including biotic and abiotic stresses. However, the functions of most EAR-motif-containing proteins remain largely uncharacterized. The plant hormone abscisic acid (ABA) also plays important roles in regulating plant responses to abiotic stresses via activation/repression of ABA-responsive genes. We report here the identification and functional characterization of two ABA-responsive EAR motif-containing protein genes, AtEAU1 (Arabidopsis thaliana EAR motif-containing ABAUp-regulated 1) and AtEAU2. Quantitative RT-PCR results show that the expressions of AtEAU1 and AtEAU2 were increased by ABA treatment, and were decreased in the ABA biosynthesis mutant aba1-5. Assays in transfected Arabidopsis protoplasts show that both AtEAU1 and AtEAU2 were specifically localized in the nucleus, and when recruited to the promoter region of the reporter gene by a fused DNA binding domain, repressed reporter gene expression. By using T-DNA insertion mutants and a gene-edited transgene-free mutant generated by CRISPR/Cas9 gene editing, we performed ABA sensitivity assays, and found that ABA sensitivity in the both ateau1 and ateau2 single mutants was increased in seedling greening assays. ABA sensitivity in the ateau1 ateau2 double mutants was also increased, but was largely similar to the ateau1 single mutants. On the other hand, all the mutants showed a wild type response to ABA in root elongation assays. Quantitative RT-PCR results show that the expression level of PYL4, an ABA receptor gene was increased, whereas that of ABI2, a PP2C gene was decreased in the ateau1 and ateau1 single, and the ateau1 ateau2 double mutants. In summary, our results suggest that AtEAU1 and AtEAU2 are ABA-response genes, and AtEAU1 and AtEAU2 are novel EAR motif-containing transcription repressors that negatively regulate ABA responses in Arabidopsis, likely by regulating the expression of some ABA signaling key regulator genes.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismoRESUMEN
OBJECTIVES: Susceptibility loci of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease were also significantly associated with the predisposition of coal worker's pneumoconiosis (CWP) in recent studies. However, only a few genes and loci were targeted in previous studies. METHODS: To systematically evaluate the genetic associations between CWP and other respiratory traits, we reviewed the reported genome-wide association study loci of five respiratory traits and then conducted a Mendelian randomisation study and a two-stage genetic association study. RESULTS: Interestingly, we found that for each SD unit, higher lung function was associated with a 66% lower risk of CWP (OR=0.34, 95% CI: 0.15 to 0.77, p=0.010) using conventional Mendelian randomisation analysis (inverse variance weighted method). Moreover, we found susceptibility loci of interstitial lung disease (rs2609255, OR=1.29, p=1.61×10-4) and lung function (rs4651005, OR=1.39, p=1.62×10-3; rs985256, OR=0.73, p=8.24×10-4 and rs6539952, OR=1.28, p=4.32×10-4) were also significantly associated with the risk of CWP. Functional annotation showed these variants were significantly associated with the expression of FAM13A (rs2609255, p=7.4 ×10-4), ANGPTL1 (rs4651005, p=5.4 ×10-7), SPATS2L (rs985256, p=1.1 ×10-5) and RP11-463O9.9 (rs6539952, p=7.1 ×10-6) in normal lung tissues, which were related to autophagy pathway simultaneously according to enrichment analysis. CONCLUSIONS: These results provided a deeper understanding of the genetic predisposition basis of CWP.
Asunto(s)
Antracosis/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteína 1 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/genética , Antracosis/etnología , Antracosis/fisiopatología , China , Proteínas Activadoras de GTPasa/genética , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Proteínas/genética , ARN Largo no Codificante/genética , Pruebas de Función Respiratoria , Factores de RiesgoRESUMEN
Trichome formation in Arabidopsis is regulated by several key regulators, and plants hormones such as gibberellin, salicylic acid, jasmonic acid and cytokinins have been shown to regulate trichome formation by affecting the transcription or activities of the key regulators. We report here the identification of two abscisic acid (ABA) responsive genes, SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB) and SVB2 as trichome formation regulator genes in Arabidopsis. The expression levels of SVB and SVB2 were increased in response to ABA treatment, their expression levels were reduced in the ABA biosynthesis mutant aba1-5, and they have similar expression pattern. In addition to the trichome defects reported previously for the svb single mutant, we found that even though the trichome numbers were largely unaffected in both the svb and svb2 single mutants generate by using CRISPR/Cas9 gene editing, the trichome numbers were greatly reduced in the svb svb2 double mutants. On the other hand, trichome numbers were increased in SVB or SVB2 overexpression plants. RT-PCR results show that the expression of the trichome formation key regulator gene ENHANCER OF GLABRA3 (EGL3) was affected in the svb svb2 double mutants. Our results suggest that SVB and SVB2 are ABA responsive genes, and SVB and SVB2 function redundantly to regulate trichome formation in Arabidopsis.
Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Tricomas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/clasificación , Proteínas de Arabidopsis/química , Mutación , Fenotipo , Filogenia , Desarrollo de la Planta , Transporte de Proteínas , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: As an essential trace element for mammalian species, selenium (Se) possesses powerful antioxidant properties and is a potential regulator of intestinal microbiota. However, effects of Cardamine hupingshanensis aqueous extract (CE), rich in Se, on balancing the intestinal redox status and regulating gut microbiota have been neglected. RESULTS: An Se-deficient rat model was established by feeding a low-Se diet (LD) for 5 weeks and CE was then supplemented to LD or normal-Se-diet (ND) rats. Antioxidant enzyme activities and short-chain fatty acids (SCFA) concentration were increased by CE in both LD and ND rats. CE improved the intestinal morphology of LD rats impaired by deficient Se. Intestinal microbiota demonstrated various changes; for example, Butyrivibrio was increased in LD rats, while Bacteroides, Christensenellaceae, Clostridiaceae and Blautia were enhanced in ND rats. CONCLUSION: Our findings provide evidence that CE shows potential in improving intestinal redox status and regulating gut microbiota. © 2020 Society of Chemical Industry.
Asunto(s)
Antioxidantes/administración & dosificación , Cardamine/química , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Selenio/deficiencia , Animales , Suplementos Dietéticos/análisis , Ácidos Grasos Volátiles/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. RESULTS: By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. CONCLUSIONS: In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.
Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Sistemas de Información Geográfica , Tricomas/crecimiento & desarrollo , Tricomas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tricomas/metabolismoRESUMEN
The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis (Arabidopsis thaliana). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant (ntl8-1D). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8 Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON (TRY) and TRICHOMELESS1 (TCL1) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1, in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1.
Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Factores de Transcripción/genética , Tricomas/metabolismo , ADN Bacteriano/genética , Inflorescencia/metabolismo , Mutagénesis Insercional , Mutación/genética , Fenotipo , Factores de Transcripción/metabolismoRESUMEN
A multi-channel reception scheme that allows each node to receive an arbitrary set of wavelengths simultaneously (i.e., collision-free) is proposed for optical interconnects. The proposed scheme only needs to use a few receivers and fixed-wavelength filters that are designed based on error-control coding theory. Experiments with up to four channel collision-free reception units are carried out to demonstrate the feasibility of the proposed scheme.
RESUMEN
The plant hormone abscisic acid (ABA) plays a crucial role in regulating plant responses to environmental stresses. Interplay of several different proteins including the PYR/PYL/RCAR receptors, A-group PP2C protein phosphatases, SnRK2 protein kinases, and downstream transcription factors regulates ABA signalling. We report here the identification of a family of ABA-induced transcription repressors (AITRs) that act as feedback regulators in ABA signalling. We found that the expression of all the 6 Arabidopsis AITR genes was induced by exogenously ABA, and their expression levels were decreased in ABA biosynthesis mutant aba1-5. BLAST searches showed that AITRs are exclusively present in angiosperms. When recruited to the promoter region of a reporter gene by a fused DNA binding domain, all AITRs inhibited reporter gene expression in transfected protoplasts. In Arabidopsis, aitr mutants showed reduced sensitivity to ABA and to stresses such as salt and drought. Quantitative RT-PCR analysis demonstrated that the ABA-induced response of PP2C and some PYR/PYL/RCAR genes was reduced in AITR5 transgenic plants but increased in an aitr2 aitr5 aitr6 triple mutant. These results provide important new insights into the regulation of ABA signalling in plants, and such information may lead to the production of plants with enhanced resistance to environmental stresses.
Asunto(s)
Ácido Abscísico/metabolismo , Magnoliopsida/enzimología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/genética , Magnoliopsida/fisiología , Mutación , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Estrés Fisiológico , Factores de Transcripción/genéticaRESUMEN
We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.
RESUMEN
The physicochemical characteristics of Jiupei are crucial in regulating the metabolism of microbial communities and the flavor profile of Baijiu during the fermentation process. This study systematically monitored the physicochemical characteristics of Qing-Jiang-flavor Baijiu Jiupei (QJFJ) and analyzed its microbial community structure and flavor compounds. Results indicated that dominant bacteria were significantly enriched in Summer- and Autumn-Jiupei (Spring: Summer: Autumn: Winter = 1.00: 1.40: 1.29: 1.21), while dominant fungi were significantly enriched in Spring- and Autumn-Jiupei (Spring: Summer: Autumn: Winter = 1.45: 1.00: 1.35: 1.31). Sequentially, reducing sugars (day 0), temperature (day 5 - day 10), moisture (day 15), and acidity (day 20 - day 25) in Jiupei affected the succession pattern of the microbial community, regulating the abundance of Saccharomyces, Staphylococcus, Cyberlindnera, and Lactobacillus, individually. Alcohol and acid compounds are considered seasonal differential compounds in QJFJ. This study will provide a theoretical basis for Baijiu production across different seasons.
RESUMEN
The development of intelligent multifunctional nanopesticides featuring enhanced foliage affinity and hierarchical target release is increasingly pivotal in modern agriculture. In this study, a novel cationic amphiphilic comb-shaped polymer, termed PEI-TA, was prepared via a one-step Michael addition between low-molecular-weight biodegradable polyethylenimine (PEI) and tetradecyl acrylate (TA), followed by neutralization with acetic acid. Using the emulsifier PEI-TA, a positively charged avermectin (AVM) nanoemulsion was prepared via a phase inversion emulsification process. Under optimal formulation, the obtained AVM nanoemulsion (defined as AVM@PEI-TA) demonstrated exceptional properties, including small size (as low as 67.6 nm), high encapsulation efficiency (up to 87.96%), and high stability toward shearing, storage, dilution, and UV irradiation. The emulsifier endowed AVM@PEI-TA with a pronounced thixotropy, so that the droplets exhibited no splash and bounce when they were sprayed on the cabbage leaf. Owing to the electrostatic attraction between the emulsifier and the leaf, AVM@PEI-TA showed improved leaf adhesion, better deposition, and higher washing resistance in contrast to both its negatively charged counterpart and AVM emulsifiable concentrate (AVM-EC). Compared to the large-sized particles, the small-sized particles of the AVM nanoemulsion more effectively traveled long distances through the vascular system of veins after entering the leaf apoplast. Moreover, the nanoparticles lost stability when exposed to multidimensional stimuli, including pH, temperature, esterase, and ursolic acid individually or simultaneously, thereby promoting the release of AVM. The release mechanisms were discussed for understanding the important role of the emulsifier in nanopesticides.
Asunto(s)
Emulsionantes , Emulsiones , Ivermectina , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacología , Emulsiones/química , Emulsionantes/química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Hojas de la Planta/química , Polietileneimina/química , Nanopartículas/química , Brassica/química , Liberación de Fármacos , Tamaño de la Partícula , Acrilatos/química , Cationes/química , Polímeros/químicaRESUMEN
Atrial fibrillation (AF) is the most prevalent arrhythmia in world-wild places and is associated with the development of severe secondary complications such as heart failure and stroke. Emerging evidence shows that the modified hemodynamic environment associated with AF can cause altered flow patterns in left atrial and even systemic blood associated with left atrial appendage thrombosis. Recent advances in magnetic resonance imaging (MRI) allow for the comprehensive visualization and quantification of in vivo aortic flow pattern dynamics. In particular, the technique of 4- dimensional flow MRI (4D flow MRI) offers the opportunity to derive advanced hemodynamic measures such as velocity, vortex, endothelial cell activation potential, and kinetic energy. This review introduces 4D flow MRI for blood flow visualization and quantification of hemodynamic metrics in the setting of AF, with a focus on AF and associated secondary complications.
RESUMEN
Background: To explore aortic stiffness measured by carotid femoral-pulse wave velocity (cf-PWV) at different stages of normal glucose, prediabetes, and diabetes mellitus (DM). Methods: The literature comparing aortic stiffness (AS) with cf-PWV between DM and non-DM samples was systematically retrieved from Pubmed, Ovid Medline, Web of Science, Embase, Scopus, CNKI, and Wanfang databases. The Newcastle-Ottawa Scale was used to assess the quality of the literature. The primary endpoint was the mean difference (MD) of cf-PWV between the normal glucose and DM samples and normal glucose and prediabetes samples. The secondary endpoints were the MD of carotid intima-media thickness (cIMT) and carotid-radial pulse wave velocity (cr-PWV). Aggregated MD and 95% confidence intervals were calculated. When the I2 value was >50% or p < 0.01, the heterogeneity was considered large, and the random-effect model was used; otherwise, the fixed-effect model was used. A sensitivity analysis was conducted to identify the source of heterogeneity, and a funnel plot and the regression Egger test was utilized to assess the publication bias. Results: A total of 37 studies were finally enrolled. Samples with DM had a higher cf-PWV value and cIMT value than those without DM, and the differences were statistically significant. The cr-PWV measurements tended to be higher in the DM group than in the non-DM group, but the difference was not significant. Samples with prediabetes also had a significantly higher cf-PWV value than samples with normal glucose. Conclusions: Samples with DM and prediabetes were associated with a higher cf-PWV value, indicating that DM patients had a higher central AS. Central AS progresses at the prediabetes stage. These data provide insight into understanding the mechanism of adverse effects of DM and prediabetes on artery stiffness.
RESUMEN
Herein, a nucleic acid assay based on autocatalytic hairpin assembly (ACHA) was proposed. In this system, two split G-quadruplex sequences were integrated into H1 and H2, respectively. And a DNA strand with the same sequence to target DNA was integrated into the assistant hairpin H3. In the presence of target DNA, the hairpin structure of H1 was opened and catalytic hairpin assembly (CHA) was activated, and then a series of DNA assembly steps based on the toehold-mediated DNA strand displacement were triggered and the product H1-H2 with sticky ends on both sides was formed. On the one side of H1-H2, the split two G-quadruplex sequences were close enough to form the intact G-quadruplex for the signal readout. At the same time, two sticky ends on the other side of H1-H2 hybridized with H3 and a new sticky end with the sequence same to the target DNA was exposed, which can immediately trigger the autocatalytic hairpin assembly reaction, and then the reaction rate of CHA was effectively accelerated and the colorimetric signal was significantly amplified. This ACHA signal amplified strategy has been successfully applied for the rapid and colorimetric nucleic acid detection.
RESUMEN
As a current technology that can effectively remove organic carbon compounds and immobilize phosphorus in sediment, sediment microbial fuel cells (SMFCs) can combine sediment remediation with power generation. This review discusses the removal efficiency of SMFCs on organic carbon compounds, including sediment organic matter, antibiotics, oil-contaminated sediments, methane, persistent organic pollutants, and other organic pollutants in sediment, with more comprehensive and targeted summaries, and it also emphasizes the mitigation of phosphorus pollution in water from the perspective of controlling endogenous phosphorus. In this review, the microbial community is used as a starting point to explore more about its roles on phosphorus and organic carbon compounds under SMFCs. Electrode modification, addition of exogenous substances and combinations with other technologies to improve the performance of SMFCs are also reviewed. It is further demonstrated that SMFCs have the prospect of long-term sustainability, but more attention needs to be paid to the study of the mechanism of SMFCs and the continuous improvement of devices for further application in practice.