Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharm Res ; 38(5): 873-883, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33835356

RESUMEN

PURPOSE: To develop a hydrogel film containing bovine serum albumin (BSA)-coated silver nanoparticles (BSA/AgNP) and evaluate its applicability for topical photothermal treatment (PTT) of skin cancer. METHODS: BSA/AgNP-loaded hydrogel films were prepared and their swelling, bioadhesive, mechanical, and photothermal properties were characterized in vitro and in vivo. RESULTS: The synthesized BSA/AgNP exhibited a narrow size distribution with good size stability and, notably, possessed great photothermal activity that could stably maintain through repetitive laser irradiation. The BSA/AgNP-loaded hydrogel films showed favorable swelling, bioadhesive, tensile, and photothermal properties. Based on these results, when tested the anti-cancer effects in B16F10 s.c. tumor-bearing mice, the PTT with the topical treatment of BSA/AgNP-loaded hydrogel films could significantly inhibit the tumor growth by a single treatment with no apparent toxicity. CONCLUSIONS: Overall, the results of this study demonstrated that the BSA/AgNP-loaded hydrogel films may serve as an effective but safe topical PTT agent for the treatment of skin cancer.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Metilgalactósidos/química , Nanocompuestos/administración & dosificación , Fototerapia/métodos , Neoplasias Cutáneas/tratamiento farmacológico , Administración Cutánea , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Ratones , Nanocompuestos/química , Albúmina Sérica Bovina/administración & dosificación , Albúmina Sérica Bovina/química , Plata/administración & dosificación , Plata/química , Neoplasias Cutáneas/patología
2.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502089

RESUMEN

Autophagy is a critical cytoprotective mechanism against stress, which is initiated by the protein kinase Unc-51-like kinase 1 (ULK1) complex. Autophagy plays a role in both inhibiting the progression of diseases and facilitating pathogenesis, so it is critical to elucidate the mechanisms regulating individual components of the autophagy machinery under various conditions. Here, we examined whether ULK1 complex component autophagy-related protein 101 (ATG101) is downregulated via ubiquitination, and whether this in turn suppresses autophagy activity in cancer cells. Knockout of ATG101 in cancer cells using CRISPR resulted in severe growth retardation and lower survival under nutrient starvation. Transfection of mutant ATG101 revealed that the C-terminal region is a key domain of ubiquitination, while co-immunoprecipitation and knockdown experiments revealed that HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1(HUWE1) is a major E3 ubiquitin ligase targeting ATG101. Protein levels of ATG101 was more stable and the related-autophagy activity was higher in HUWE1-depleted cancer cells compared to wild type (WT) controls, indicating that HUWE1-mediated ubiquitination promotes ATG101 degradation. Moreover, enhanced autophagy in HUWE1-depleted cancer cells was reversed by siRNA-mediated ATG101 knockdown. Stable ATG101 level in HUWE1-depleted cells was a strong driver of autophagosome formation similar to upregulation of the known HUWE1 substrate WD repeat domain, phosphoinositide interacting 2 (WIPI2). Cellular survival rates were higher in HUWE1-knockdown cancer cells compared to controls, while concomitant siRNA-mediated ATG101 knockdown tends to increase apoptosis rate. Collectively, these results suggest that HUWE1 normally serves to suppress autophagy by ubiquitinating and triggering degradation of ATG101 and WIPI2, which in turn represses the survival of cancer cells. Accordingly, ATG101-mediated autophagy may play a critical role in overcoming metabolic stress, thereby contributing to the growth, survival, and treatment resistance of certain cancers.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Neoplasias/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Supervivencia Celular , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Transporte Vesicular/genética
3.
EMBO Rep ; 19(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29487085

RESUMEN

Autophagy begins with the formation of autophagosomes, a process that depends on the activity of the serine/threonine kinase ULK1 (hATG1). Although earlier studies indicated that ULK1 activity is regulated by dynamic polyubiquitination, the deubiquitinase involved in the regulation of ULK1 remained unknown. In this study, we demonstrate that ubiquitin-specific protease 20 (USP20) acts as a positive regulator of autophagy initiation through stabilizing ULK1. At basal state, USP20 binds to and stabilizes ULK1 by removing the ubiquitin moiety, thereby interfering with the lysosomal degradation of ULK1. The stabilization of basal ULK1 protein levels is required for the initiation of starvation-induced autophagy, since the depletion of USP20 by RNA interference inhibits LC3 puncta formation, a marker of autophagic flux. At later stages of autophagy, USP20 dissociates from ULK1, resulting in enhanced ULK1 degradation and apoptosis. Taken together, our findings provide the first evidence that USP20 plays a crucial role in autophagy initiation by maintaining the basal expression level of ULK1.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Ubiquitina Tiolesterasa/metabolismo , Animales , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Línea Celular , Supervivencia Celular , Expresión Génica , Células HEK293 , Humanos , Lisosomas/metabolismo , Ratones , Unión Proteica , Estabilidad Proteica , Proteolisis , Interferencia de ARN , ARN Interferente Pequeño/genética , Ubiquitina Tiolesterasa/genética , Ubiquitinación
4.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142954

RESUMEN

MINERVA (melanoma invasion by ERK), also known as FAM129B, is a member of the FAM129 protein family, which is only present in vertebrates. MINERVA is involved in key signaling pathways regulating cell survival, proliferation and apoptosis and found upregulated in many types of cancer promoting invasion. However, the exact function of the protein remains elusive. X-ray crystallographic methods were implemented to determine the crystal structure of MINERVAΔC, lacking C-terminal flexible region. Trypsin digestion was required before crystallization to obtain diffraction-quality crystals. While the N-terminal pleckstrin homology (PH) domain exhibits the typical fold of PH domains, lipid binding assay indicates specific affinity towards phosphatidic acid and inositol 3-phosphate. A helix-rich domain that constitutes the rest of the molecule demonstrates a novel L-shaped fold that encompasses the PH domain. The overall structure of MINERVAΔC with binding assays and cell-based experiments suggest plasma membrane association of MINERVA and its function seem to be tightly regulated by various motifs within the C-terminal flexible region. Elucidation of MINERVAΔC structure presents a novel fold for an α-helix bundle domain that would provide a binding platform for interacting partners.


Asunto(s)
Membrana Celular/metabolismo , Cristalografía por Rayos X/métodos , Melanoma/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Humanos , Melanoma/patología , Modelos Moleculares , Fosfoproteínas/aislamiento & purificación , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transducción de Señal
5.
Saudi Pharm J ; 28(7): 791-802, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32647480

RESUMEN

Ulmus davidiana var. japonica (UD) has widely been used in Korean traditional medicine for the treatment of various types of diseases including inflammation and skin wounds. The UD root bark powders possess gelling activity with an excellent capacity for absorbing water. This distinct property could make the UD root bark powders to be a great material for manufacturing a gel film specifically for the healing of large and highly exudating wounds (e.g., pressure sores and diabetic ulcers). In this research, we separated the UD root bark powder into 4 different samples based on their sizes and then tested their water absorption capacity and flowability. Based on these results, 75-150 µm sized and below 75 µm sized samples of UD root bark powders were chosen, and UD gel films were prepared. The UD gel films showed good thermal stability and mechanically improved properties compared with pullulan only gel film with excellent swelling capacity and favorable skin adhesiveness. Further, in the animal studies with the skin wound mice model, the UD gel films exhibited significant therapeutic effects on accelerating wound closure and dermal regeneration. Overall, this study demonstrated the applicability of UD root bark powders for hydrogel wound dressing materials, and the potential of UD gel films to be superior wound dressings to currently available ones.

6.
BMC Cancer ; 19(1): 571, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31185958

RESUMEN

BACKGROUND: Using a pathway-focused approach, we aimed to provide a subgroup-specific basis for finding novel therapeutic strategies and further refinement of the risk stratification in pediatric medulloblastoma. METHOD: Based on genome-wide Cox regression and Gene Set Enrichment Analysis, we investigated prognosis-related signaling pathways and core genes in pediatric medulloblastoma subgroups using 530 patient data from Medulloblastoma Advanced Genomic International Consortium (MAGIC) project. We further examined the relationship between expression of the prognostic core genes and frequent chromosome aberrations using broad range copy number change data. RESULTS: In SHH subgroup, relatively high expression of the core genes involved in p53, PLK1, FOXM1, and Aurora B signaling pathways are associated with poor prognosis, and their average expression synergistically increases with co-occurrence of losses of 17p, 14q, or 10q, or gain of 17q. In Group 3, in addition to high MYC expression, relatively elevated expression of PDGFRA, IGF1R, and FGF2 and their downstream genes in PI3K/AKT and MAPK/ERK pathways are related to poor survival outcome, and their average expression is increased with the presence of isochromosome 17q [i(17q)] and synergistically down-regulated with simultaneous losses of 16p, 8q, or 4q. In Group 4, up-regulation of the genes encoding various immune receptors and those involved in NOTCH, NF-κB, PI3K/AKT, or RHOA signaling pathways are associated with worse prognosis. Additionally, the expressions of Notch genes correlate with those of the prognostic immune receptors. Besides the Group 4 patients with previously known prognostic aberration, loss of chromosome 11, those with loss of 8q but without i(17q) show excellent survival outcomes and low average expression of the prognostic core genes whereas those harboring 10q loss, 1q gain, or 12q gain accompanied by i(17q) show bad outcomes. Finally, several metabolic pathways known to be reprogrammed in cancer cells are detected as prognostic pathways including glutamate metabolism in SHH subgroup, pentose phosphate pathway and TCA cycle in Group 3, and folate-mediated one carbon-metabolism in Group 4. CONCLUSIONS: The results underscore several subgroup-specific pathways for potential therapeutic interventions: SHH-GLI-FOXM1 pathway in SHH subgroup, receptor tyrosine kinases and their downstream pathways in Group 3, and immune and inflammatory pathways in Group 4.


Asunto(s)
Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Redes y Vías Metabólicas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Cerebelosas/diagnóstico , Niño , Salud Infantil , Preescolar , Femenino , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Inflamación/metabolismo , Estimación de Kaplan-Meier , Masculino , Meduloblastoma/diagnóstico , Pronóstico , Modelos de Riesgos Proporcionales , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/genética , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
7.
Int J Mol Sci ; 18(9)2017 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-28846638

RESUMEN

Rab escort protein 1 (REP1), a component of the Rab geranyl-geranyltransferase 2 complex, plays a role in Rab protein recruitment in proper vesicles during vesicle trafficking. In addition to having well-known tissue degenerative phenotypes in the REP1 mutant, REP1 is tightly associated with cancer development and contributes to cell growth and survival. However, the functional mechanism of REP1 in cancer progression is largely uninvestigated. Here, we show that REP1 plays a crucial role in regulating mammalian target of rapamycin (mTOR) signaling and its downstream pathways, as well as autophagy and macropinocytosis, which are essential for cancer cell survival during metabolic stresses including starvation. REP1 small interfering RNA (siRNA) treatment downregulates mTORC1 activity in growing media, but blocks autophagosome formation under nutrient-depleted conditions. In contrast to the mild decrease of lysosomal enzyme activity seen in REP1 depletion, in REP1 knockdown the subcellular localization of lysosomes is altered, and localization of REP1 itself is modulated by intracellular nutrient levels and mTOR activity. Furthermore, REP1 depletion increases macro pinocytosis which may be a feedback mechanism to compensate autophagy inhibition. Concomitant treatment with macropinocytosis inhibitor and REP1siRNAresults in more significant cell death than autophagy blockade with REP1 knockdown. Therefore, REP1-mediated autophagy and lysosomal degradation processes act as novel regulatory mechanisms to support cancer cell survival, which can be further investigated as a potential cancer-targeting pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Neoplasias Pancreáticas/metabolismo , Pinocitosis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Supervivencia Celular , Regulación hacia Abajo , Células HeLa , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones
8.
Pharm Res ; 33(9): 2218-2228, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27251414

RESUMEN

PURPOSE: To investigate the applicability of fusion biotoxins combining pore-forming toxins (PFTs) and ribosome-inactivating proteins (RIPs) for the anti-cancer treatment. METHODS: Membrane active PFTs tend to destabilize cell membranes of tumor cells, but lack a warhead inducing significant cause of cell death. Cell-impermeable RIPs possess a powerful warhead, yet not able to enter the tumor cells. To address these challenges for anti-tumor effects, we introduced a fusion strategy of conjugating melittin (a PFT) and gelonin (a type 1 RIP) via chemical and recombinant methods, followed by in vitro assays and in vivo animal studies. RESULTS: In vitro characterization results confirmed that the chimeric gelonin-melittin fusion proteins retained equivalent intrinsic activity to that of unmodified gelonin in inhibiting protein translation. However, chemically conjugated gelonin-melittin (cGel-Mel) and recombinant chimeric gelonin-melittin fusion (rGel-Mel) exhibited greater cell uptake, yielding a significantly enhanced cytotoxic activity over treatment of gelonin, melittin or physical mixture of gelonin and melittin. Remarkably, cGel-Mel and rGel-Mel displayed 32- and 10-fold lower IC50 than gelonin in the cell lines. The superior anti-tumor efficacy of multivalent cGel-Mel to monovalent rGel-Mel suggested that valency could be a crucial factor for the extent of melittin-mediated cell uptake. Tumoricidal effects observed from animal studies were in good accordance with our findings from the cellular assays. CONCLUSIONS: This study successfully demonstrated that fusion of biotoxins could provide a simple yet effective way to synergistically augment their anti-tumor activity.


Asunto(s)
Antineoplásicos Fitogénicos/química , Meliteno/química , Proteínas Recombinantes de Fusión/química , Proteínas Inactivadoras de Ribosomas Tipo 1/química , Toxinas Biológicas/química , Animales , Antineoplásicos Fitogénicos/farmacología , Línea Celular , Línea Celular Tumoral , Perros , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Meliteno/farmacología , Ratones , Neoplasias/tratamiento farmacológico , Ratas , Proteínas Recombinantes de Fusión/farmacología , Proteínas Inactivadoras de Ribosomas/química , Proteínas Inactivadoras de Ribosomas/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Toxinas Biológicas/farmacología
9.
Proc Natl Acad Sci U S A ; 110(31): E2875-84, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858448

RESUMEN

Macroautophagy (hereafter autophagy) functions in the nonselective clearance of cytoplasm. This process participates in many aspects of cell physiology, and is conserved in all eukaryotes. Autophagy begins with the organization of the phagophore assembly site (PAS), where most of the AuTophaGy-related (Atg) proteins are at least transiently localized. Autophagy occurs at a basal level and can be induced by various types of stress; the process must be tightly regulated because insufficient or excessive autophagy can be deleterious. A complex composed of Atg17-Atg31-Atg29 is vital for PAS organization and autophagy induction, implying a significant role in autophagy regulation. In this study, we demonstrate that Atg29 is a phosphorylated protein and that this modification is critical to its function; alanine substitution at the phosphorylation sites blocks its interaction with the scaffold protein Atg11 and its ability to facilitate assembly of the PAS. Atg29 has the characteristics of an intrinsically disordered protein, suggesting that it undergoes dynamic conformational changes on interaction with a binding partner(s). Finally, single-particle electron microscopy analysis of the Atg17-Atg31-Atg29 complex reveals an elongated structure with Atg29 located at the opposing ends.


Asunto(s)
Autofagia/fisiología , Proteínas Portadoras/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Fosforilación/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
10.
Proc Natl Acad Sci U S A ; 108(27): 11121-6, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21690395

RESUMEN

Autophagy, a lysosome-mediated catabolic process, contributes to maintenance of intracellular homeostasis and cellular response to metabolic stress. In yeast, genes essential to the execution of autophagy have been defined, including autophagy-related gene 1 (ATG1), a kinase responsible for initiation of autophagy downstream of target of rapamycin. Here we investigate the role of the mammalian Atg1 homologs, uncoordinated family member (unc)-51-like kinase 1 and 2 (ULK1 and ULK2), in autophagy by generating mouse embryo fibroblasts (MEFs) doubly deficient for ULK1 and ULK2. We found that ULK1/2 are required in the autophagy response to amino acid deprivation but not for autophagy induced by deprivation of glucose or inhibition of glucose metabolism. This ULK1/2-independent autophagy was not the simple result of bioenergetic compromise and failed to be induced by AMP-activated protein kinase activators such as 5-aminoimidazole-4-carboxamide riboside and phenformin. Instead we found that autophagy induction upon glucose deprivation correlated with a rise in cellular ammonia levels caused by elevated amino acid catabolism. Even in complete medium, ammonia induced autophagy in WT and Ulk1/2(-/-) MEFs but not in Atg5-deficient MEFs. The autophagy response to ammonia is abrogated by a cell-permeable form of pyruvate resulting from the scavenging of excess ammonia through pyruvate conversion to alanine. Thus, although ULK1 and/or ULK2 are required for the autophagy response following deprivation of nitrogenous amino acids, the autophagy response to the enhanced amino acid catabolism induced by deprivation of glucose or direct exposure to ammonia does not require ULK1 and/or ULK2. Together, these data suggest that autophagy provides cells with a mechanism to adapt not only to nitrogen deprivation but also to nitrogen excess.


Asunto(s)
Amoníaco/metabolismo , Autofagia/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Aminoácidos/metabolismo , Amoníaco/farmacología , Animales , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucosamina/metabolismo , Glucosa/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética
11.
Cancers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831455

RESUMEN

Autophagy is essential for organismal development, maintenance of energy homeostasis, and quality control of organelles and proteins. As a selective form of autophagy, mitophagy is necessary for effectively eliminating dysfunctional mitochondria. Both autophagy and mitophagy are linked with tumor progression and inhibition. The regulation of mitophagy and autophagy depend upon tumor type and stage. In tumors, mitophagy has dual roles: it removes damaged mitochondria to maintain healthy mitochondria and energy production, which are necessary for tumor growth. In contrast, mitophagy has been shown to inhibit tumor growth by mitigating excessive ROS production, thus preventing mutation and chromosomal instability. Ubiquitination and deubiquitination are important modifications that regulate autophagy. Multiple E3 ubiquitin ligases and DUBs modulate the activity of the autophagy and mitophagy machinery, thereby influencing cancer progression. In this review, we summarize the mechanistic association between cancer development and autophagy/mitophagy activities regulated by the ubiquitin modification of autophagic proteins. In addition, we discuss the function of multiple proteins involved in autophagy/mitophagy in tumors that may represent potential therapeutic targets.

12.
Cells ; 12(23)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067169

RESUMEN

Autophagy is an essential lysosome-mediated degradation pathway that maintains cellular homeostasis and viability in response to various intra- and extracellular stresses. Mitophagy is a type of autophagy that is involved in the intricate removal of dysfunctional mitochondria during conditions of metabolic stress. In this review, we describe the multifaceted roles of autophagy and mitophagy in normal physiology and the field of cancer biology. Autophagy and mitophagy exhibit dual context-dependent roles in cancer development, acting as tumor suppressors and promoters. We also discuss the important role of autophagy and mitophagy within the cancer microenvironment and how autophagy and mitophagy influence tumor host-cell interactions to overcome metabolic deficiencies and sustain the activity of cancer-associated fibroblasts (CAFs) in a stromal environment. Finally, we explore the dynamic interplay between autophagy and the immune response in tumors, indicating their potential as immunomodulatory targets in cancer therapy. As the field of autophagy and mitophagy continues to evolve, this comprehensive review provides insights into their important roles in cancer and cancer microenvironment.


Asunto(s)
Mitofagia , Neoplasias , Humanos , Mitofagia/fisiología , Autofagia/fisiología , Neoplasias/patología , Biología , Microambiente Tumoral
13.
Redox Biol ; 60: 102628, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36774778

RESUMEN

Mitochondrial methionyl-tRNA synthetase (MARS2) canonically mediates the formation of fMet-tRNAifMet for mitochondrial translation initiation. Mitochondrial calcium uniporter (MCU) is a major gate of Ca2+ flux from cytosol into the mitochondrial matrix. We found that MARS2 interacts with MCU and stimulates mitochondrial Ca2+ influx. Methionine binding to MARS2 would act as a molecular switch that regulates MARS2-MCU interaction. Endogenous knockdown of MARS2 attenuates mitochondrial Ca2+ influx and induces p53 upregulation through the Ca2+-dependent CaMKII/CREB signaling. Subsequently, metabolic rewiring from glycolysis into pentose phosphate pathway is triggered and cellular reactive oxygen species level decreases. This metabolic switch induces inhibition of epithelial-mesenchymal transition (EMT) via cellular redox regulation. Expression of MARS2 is regulated by ZEB1 transcription factor in response to Wnt signaling. Our results suggest the mechanisms of mitochondrial Ca2+ uptake and metabolic control of cancer that are exerted by the key factors of the mitochondrial translational machinery and Ca2+ homeostasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Metionina-ARNt Ligasa/metabolismo
14.
Biomedicines ; 10(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35625898

RESUMEN

Acquisition of acquired chemoresistance during treatment cycles in urothelial carcinoma of the bladder (UCB) is the major cause of death through enhancing the risk of cancer progression and metastasis. Elevated glucose flux through the abnormal upregulation of O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) controls key signaling and metabolic pathways regulating diverse cancer cell phenotypes. This study showed that OGT expression levels in two human UCB cell models with acquired resistance to gemcitabine and paclitaxel were significantly upregulated compared with those in parental cells. Reducing hyper-O-GlcNAcylation by OGT knockdown (KD) markedly facilitated chemosensitivity to the corresponding chemotherapeutics in both cells, and combination treatment with OGT-KD showed more severe growth defects in chemoresistant sublines. We subsequently verified the suppressive effects of OGT-KD monotherapy on cell migration/invasion in vitro and xenograft tumor growth in vivo in chemoresistant UCB cells. Transcriptome analysis of these cells revealed 97 upregulated genes, which were enriched in multiple oncogenic pathways. Our final choice of suspected OGT glycosylation substrate was VCAN, S1PR3, PDGFRB, and PRKCG, the knockdown of which induced cell growth defects. These findings demonstrate the vital role of dysregulated OGT activity and hyper-O-GlcNAcylation in modulating treatment failure and tumor aggression in chemoresistant UCB.

15.
Autophagy ; 17(7): 1636-1648, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32508216

RESUMEN

Macroautophagy/autophagy is a key catabolic process in which different cellular components are sequestered inside double-membrane vesicles called autophagosomes for subsequent degradation. In yeast, autophagosome formation occurs at the phagophore assembly site (PAS), a specific perivacuolar location that works as an organizing center for the recruitment of different autophagy-related (Atg) proteins. How the PAS is localized to the vacuolar periphery is not well understood. Here we show that the vacuolar membrane protein Vac8 is required for correct vacuolar localization of the PAS. We provide evidence that Vac8 anchors the PAS to the vacuolar membrane by binding Atg13 and recruiting the Atg1 initiation complex. VAC8 deletion or mislocalization of the protein reduce autophagy activity, highlighting the importance of both the PAS and the correct vacuolar localization of the Atg1 initiation complex for efficient and robust autophagy.Abbreviations: AID: auxin-inducible degradation; Atg: autophagy-related; Cvt: cytoplasm-to-vacuole targeting; DMSO: dimethyl sulfoxide; ER: endoplasmic reticulum; GFP: green fluorescent protein; IAA: 3-indole acetic acid; PAS: phagophore assembly site; RFP: red fluorescent protein.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/fisiología , Nitrógeno/deficiencia , Proteínas de Saccharomyces cerevisiae/fisiología , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagosomas/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Microscopía Fluorescente , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/fisiología , Proteínas de Transporte Vesicular/metabolismo
16.
Exp Mol Med ; 53(3): 369-383, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33654220

RESUMEN

Unc-51-like autophagy activating kinase 1 (ULK1), a mammalian homolog of the yeast kinase Atg1, has an essential role in autophagy induction. In nutrient and growth factor signaling, ULK1 activity is regulated by various posttranslational modifications, including phosphorylation, acetylation, and ubiquitination. We previously identified glycogen synthase kinase 3 beta (GSK3B) as an upstream regulator of insulin withdrawal-induced autophagy in adult hippocampal neural stem cells. Here, we report that following insulin withdrawal, GSK3B directly interacted with and activated ULK1 via phosphorylation of S405 and S415 within the GABARAP-interacting region. Phosphorylation of these residues facilitated the interaction of ULK1 with MAP1LC3B and GABARAPL1, while phosphorylation-defective mutants of ULK1 failed to do so and could not induce autophagy flux. Furthermore, high phosphorylation levels of ULK1 at S405 and S415 were observed in human pancreatic cancer cell lines, all of which are known to exhibit high levels of autophagy. Our results reveal the importance of GSK3B-mediated phosphorylation for ULK1 regulation and autophagy induction and potentially for tumorigenesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/patología , Células-Madre Neurales/patología , Procesamiento Proteico-Postraduccional , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal
17.
Int J Nanomedicine ; 15: 5459-5471, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801700

RESUMEN

PURPOSE: Indocyanine green (ICG), a near infrared (NIR) dye clinically approved in medical diagnostics, possesses great heat conversion efficiency, which renders itself as an effective photosensitizer for photothermal therapy (PTT) of cancer. However, there remain bottleneck challenges for use in PTT, which are the poor photo and plasma stability of ICG. To address these problems, in this research, ICG-loaded silver nanoparticles were prepared and evaluated for the applicability as an effective agent for photothermal cancer therapy. METHODS AND RESULTS: PEGylated bovine serum albumin (BSA)-coated silver core/shell nanoparticles were synthesized with a high loading of ICG ("PEG-BSA-AgNP/ICG"). Physical characterization was carried out using size analyzer, transmission electron microscopy, and Fourier transform infrared spectrophotometry to identify successful preparation and size stability. ICG-loading content and the photothermal conversion efficiency of the particles were confirmed with inductively coupled plasma mass spectrometry and laser instruments. In vitro studies showed that the PEG-BSA-AgNP/ICG could provide great photostability for ICG, and their applicability for PTT was verified from the cellular study results. Furthermore, when the PEG-BSA-AgNP/ICG were tested in vivo, study results exhibited that ICG could stably remain in the blood circulation for a markedly long period (plasma half-life: 112 min), and about 1.7% ID/g tissue could be accumulated in the tumor tissue at 4 h post-injection. Such nanoparticle accumulation in the tumor enabled tumor surface temperature to be risen to 50°C (required for photo-ablation) by laser irradiation and led to successful inhibition of tumor growth in the B16F10 s.c. syngeneic nude mice model, with minimal systemic toxicity. CONCLUSION: Our findings demonstrated that PEG-BSA-AgNPs could serve as effective carriers for delivering ICG to the tumor tissue with great stability and safety.


Asunto(s)
Antineoplásicos/farmacología , Nanopartículas del Metal/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Estabilidad de Medicamentos , Dispersión Dinámica de Luz , Semivida , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Melanoma Experimental/tratamiento farmacológico , Ratones Endogámicos ICR , Ratones Desnudos , Microscopía Electrónica de Transmisión , Polietilenglicoles/química , Albúmina Sérica Bovina/química , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
18.
J Control Release ; 325: 100-110, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32621826

RESUMEN

Radiotherapy (RT) is a major modality for cancer treatment, along with surgery and chemotherapy. Despite its therapeutic effect, the recurrence and metastasis of tumors due to the acquired resistance of cancer cells to RT remain significant clinical problems. Therefore, it is imperative to overcome radioresistance and improve radiosensitivity in cancer patients. Here, we synthesized hydroxychloroquine (HCQ)-loaded hollow mesoporous silica nanoparticles (HMSNs) to enable effective inhibition of radiation-induced cytoprotective autophagy and enhance the therapeutic efficacy of RT. HCQ-HMSN-treated HCT116 colon cancer cells showed a 200-fold higher intracellular uptake of HCQ than that of free HCQ-treated cells, thereby effectively inhibiting the radiation-induced autophagy of cancer cells. In vivo imaging and therapy studies of a tumor xenograft model showed preferential accumulation of HCQ-HMSNs in tumor tissues and significant enhancement of RT by inhibiting autophagy in the tumor sites. Histopathology analyses of major organs, blood chemistry profiles, and changes in body weights of mice confirmed the good biocompatibility of HCQ-HMSNs.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Autofagia , Humanos , Hidroxicloroquina , Ratones , Dióxido de Silicio
19.
Cell Death Dis ; 11(1): 38, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959741

RESUMEN

In mammals, autophagosome formation is initiated by ULK1 via the posttranslational modification of this protein. However, the precise role of ULK1 ubiquitination in modulating autophagy is unknown. Here, we show that NEDD4L, an E3 ubiquitin ligase, binds ULK1 in pancreatic cancer cells. ULK1 expression was stabilized in NEDD4L knockdown cells compared to that in control cells, suggesting that NEDD4L is involved in ULK1 ubiquitination and its subsequent degradation. Autophagy activity was enhanced in NEDD4L knockdown cells compared to control cells. NEDD4L-depleted cells exhibited an increase in the cellular oxygen consumption rate (OCR) and mitochondrial membrane potential, and maintained mitochondrial fusion status in response to metabolic stress. Enhanced OCR and mitochondrial fusion morphology in NEDD4L knockdown cells were repressed by siRNA targeting ULK1. In addition to ULK1, ASCT2, a glutamine transporter, was accumulated in NEDD4L-depleted cells; this is important for maintaining autophagy activation and mitochondrial metabolic function. Finally, the cellular growth and survival rate increased in NEDD4L knockdown cells compared to control cells. However, the genetic or pharmacological blockade of either ULK1 or ASCT2 in NEDD4L-depleted cells sensitized pancreatic cancer cells, particularly in response to nutrient deprivation. In a mouse xenograft model of pancreatic cancer, the use of autophagy inhibitors suppressed tumor growth more in NEDD4L-depleted cells than in tumors from control cells. NEDD4L and ULK1 levels were inversely correlated in two different pancreatic cancer mouse models-xenograft mouse and KPC mouse models. These results suggest that NEDD4L suppressed autophagy and mitochondrial metabolism by reducing cellular ULK1 or ASCT2 levels, and thus could repress the growth and survival of pancreatic cancer cells. Therefore, ubiquitin ligase-mediated autophagy plays a critical role in regulating mitochondrial metabolism, thereby contributing to the growth and survival of certain cancers with low NEDD4L levels.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Regulación hacia Abajo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Respiración de la Célula , Supervivencia Celular , Estabilidad de Enzimas , Femenino , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Unión Proteica , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Toxins (Basel) ; 12(5)2020 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32397648

RESUMEN

Toxin peptides derived from the skin secretions of amphibians possess unique hypoglycemic activities. Many of these peptides share cationic and amphipathic structural similarities and appear to possess cell-penetrating abilities. The mechanism of their insulinotropic action is yet not elucidated, but they have shown great potential in regulating the blood glucose levels in animal models. Therefore, they have emerged as potential drug candidates as therapeutics for type 2 diabetes. Despite their anti-diabetic activity, there remain pharmaceutical challenges to be addressed for their clinical applications. Here, we present an overview of recent studies related to the toxin-derived anti-diabetic peptides derived from the skin secretions of amphibians. In the latter part, we introduce the bottleneck challenges for their delivery in vivo and general drug delivery strategies that may be applicable to extend their blood circulation time. We focus our research on the strategies that have been successfully applied to improve the plasma half-life of exendin-4, a clinically available toxin-derived anti-diabetic peptide drug.


Asunto(s)
Venenos de Anfibios/uso terapéutico , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Exenatida/uso terapéutico , Hipoglucemiantes/uso terapéutico , Toxinas Biológicas/uso terapéutico , Venenos de Anfibios/química , Venenos de Anfibios/farmacocinética , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Composición de Medicamentos , Exenatida/química , Exenatida/farmacocinética , Semivida , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Toxinas Biológicas/química , Toxinas Biológicas/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA