Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(3): 561-565, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33503447

RESUMEN

Our nationwide network of BME women faculty collectively argue that racial funding disparity by the National Institutes of Health (NIH) remains the most insidious barrier to success of Black faculty in our profession. We thus refocus attention on this critical barrier and suggest solutions on how it can be dismantled.


Asunto(s)
Investigación Biomédica/economía , Negro o Afroamericano , Administración Financiera , Investigadores/economía , Humanos , National Institutes of Health (U.S.)/economía , Grupos Raciales , Estados Unidos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38904851

RESUMEN

Computational, or in-silico, models are an effective, non-invasive tool for investigating cardiovascular function. These models can be used in the analysis of experimental and clinical data to identify possible mechanisms of (ab)normal cardiovascular physiology. Recent advances in computing power and data management have led to innovative and complex modeling frameworks that simulate cardiovascular function across multiple scales. While commonly used in multiple disciplines, there is a lack of concise guidelines for the implementation of computer models in cardiovascular research. In line with recent calls for more reproducible research, it is imperative that scientists adhere to credible practices when developing and applying computational models to their research. The goal of this manuscript is to provide a consensus document that identifies best practices for in-silico computational modeling in cardiovascular research. These guidelines provide the necessary methods for mechanistic model development, model analysis, and formal model calibration using fundamentals from statistics. We outline rigorous practices for computational modeling in cardiovascular research and discuss its synergistic value to experimental and clinical data.

3.
PLoS Comput Biol ; 18(9): e1010017, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36126091

RESUMEN

In-vivo studies of pulmonary vascular disease and pulmonary hypertension (PH) have provided key insight into the progression of right ventricular (RV) dysfunction. Additional in-silico experiments using multiscale computational models have provided further details into biventricular mechanics and hemodynamic function in the presence of PH, yet few have assessed whether model parameters are practically identifiable prior to data collection. Moreover, none have used modeling to devise synergistic experimental designs. To address this knowledge gap, we conduct a practical identifiability analysis of a multiscale cardiovascular model across four simulated experimental designs. We determine a set of parameters using a combination of Morris screening and local sensitivity analysis, and test for practical identifiability using profile likelihood-based confidence intervals. We employ Markov chain Monte Carlo (MCMC) techniques to quantify parameter and model forecast uncertainty in the presence of noise corrupted data. Our results show that model calibration to only RV pressure suffers from practical identifiability issues and suffers from large forecast uncertainty in output space. In contrast, parameter and model forecast uncertainty is substantially reduced once additional left ventricular (LV) pressure and volume data is included. A comparison between single point systolic and diastolic LV data and continuous, time-dependent LV pressure-volume data reveals that at least some quantitative data from both ventricles should be included for future experimental studies.


Asunto(s)
Hipertensión Pulmonar , Disfunción Ventricular Derecha , Ventrículos Cardíacos , Humanos , Funciones de Verosimilitud , Proyectos de Investigación , Función Ventricular
4.
Biophys J ; 121(17): 3213-3223, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35918899

RESUMEN

For patients with heart failure, myocardial ATP level can be reduced to one-half of that observed in healthy controls. This marked reduction (from ≈8 mM in healthy controls to as low as 3-4 mM in heart failure) has been suggested to contribute to impaired myocardial contraction and to the decreased pump function characteristic of heart failure. However, in vitro measures of maximum myofilament force generation, maximum shortening velocity, and the actomyosin ATPase activity show effective KM values for MgATP ranging from ≈10 µM to 150 µM, well below the intracellular ATP level in heart failure. Thus, it is not clear that the fall of myocardial ATP observed in heart failure is sufficient to impair the function of the contractile proteins. Therefore, we tested the effect of low MgATP levels on myocardial contraction using demembranated cardiac muscle preparations that were exposed to MgATP levels typical of the range found in non-failing and failing hearts. Consistent with previous studies, we found that a 50% reduction in MgATP level (from 8 mM to 4 mM) did not reduce maximum force generation or maximum velocity of shortening. However, we found that a 50% reduction in MgATP level caused a 20%-25% reduction in maximal power generation (measured during muscle shortening against a load) and a 20% slowing of cross-bridge cycling kinetics. These results suggest that the decreased cellular ATP level occurring in heart failure contributes to the impaired pump function of the failing heart. Since the ATP-myosin ATPase dissociation constant is estimated to be submillimolar, these findings also suggest that MgATP concentration affects cross-bridge dynamics through a mechanism that is more complex than through the direct dependence of MgATP concentration on myosin ATPase activity. Finally, these studies suggest that therapies targeted to increase adenine nucleotide pool levels in cardiomyocytes might be beneficial for treating heart failure.


Asunto(s)
Insuficiencia Cardíaca , Miocardio , Adenosina Trifosfato/metabolismo , Corazón , Humanos , Contracción Muscular , Contracción Miocárdica , Miocardio/metabolismo , Miosinas
5.
Am J Physiol Heart Circ Physiol ; 319(6): H1459-H1473, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33064565

RESUMEN

Although women are more susceptible to pulmonary arterial hypertension (PAH) than men, their right ventricular (RV) function is better preserved. Estrogen receptor-α (ERα) has been identified as a likely mediator for estrogen protection in the RV. However, the role of ERα in preserving RV function and remodeling during pressure overload remains poorly understood. We hypothesized that loss of functional ERα removes female protection from adverse remodeling and is permissive for the development of a maladapted RV phenotype. Male and female rats with a loss-of-function mutation in ERα (ERαMut) and wild-type (WT) littermates underwent RV pressure overload by pulmonary artery banding (PAB). At 10 wk post-PAB, WT and ERαMut demonstrated RV hypertrophy. Analysis of RV pressure waveforms demonstrated RV-pulmonary vascular uncoupling and diastolic dysfunction in female, but not male, ERαMut PAB rats. Similarly, female, but not male, ERαMut exhibited increased RV fibrosis, comprised primarily of thick collagen fibers. There was an increased protein expression ratio of TIMP metallopeptidase inhibitor 1 (Timp1) to matrix metalloproteinase 9 (Mmp9) in female ERαMut compared with WT PAB rats, suggesting less collagen degradation. RNA-sequencing in female WT and ERαMut RV revealed kallikrein-related peptidase 10 (Klk10) and Jun Proto-Oncogene (Jun) as possible mediators of female RV protection during PAB. In summary, ERα in females is protective against RV-pulmonary vascular uncoupling, diastolic dysfunction, and fibrosis in response to pressure overload. ERα appears to be dispensable for RV adaptation in males. ERα may be a mediator of superior RV adaptation in female patients with PAH.NEW & NOTEWORTHY Using a novel loss-of-function mutation in estrogen receptor-α (ERα), we demonstrate that female, but not male, ERα mutant rats display right ventricular (RV)-vascular uncoupling, diastolic dysfunction, and fibrosis following pressure overload, indicating a sex-dependent role of ERα in protecting against adverse RV remodeling. TIMP metallopeptidase inhibitor 1 (Timp1), matrix metalloproteinase 9 (Mmp9), kallikrein-related peptidase 10 (Klk10), and Jun Proto-Oncogene (Jun) were identified as potential mediators in ERα-regulated pathways in RV pressure overload.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Hipertrofia Ventricular Derecha/prevención & control , Miocardio/metabolismo , Disfunción Ventricular Derecha/prevención & control , Función Ventricular Derecha , Remodelación Ventricular , Animales , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno/genética , Femenino , Colágenos Fibrilares/metabolismo , Fibrosis , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/fisiopatología , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mutación , Miocardio/patología , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas Mutantes , Ratas Sprague-Dawley , Factores Sexuales , Transducción de Señal , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/patología , Disfunción Ventricular Derecha/fisiopatología
6.
Am J Physiol Heart Circ Physiol ; 316(5): H1005-H1013, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30822119

RESUMEN

Right ventricular failure (RVF) is a common cause of death in patients suffering from pulmonary arterial hypertension (PAH). The current treatment for PAH only moderately improves symptoms, and RVF ultimately occurs. Therefore, it is necessary to develop new treatment strategies to protect against right ventricle (RV) maladaptation despite PAH progression. In this study, we hypothesize that local mesenchymal stem cell (MSC) delivery via a novel bioscaffold can improve RV function despite persistent PAH. To test our hypothesis, we induced PAH in adult rats with SU5416 and chronic hypoxia exposure; treated with rat MSCs delivered by intravenous injection, intramyocardial injection, or epicardial placement of a bioscaffold; and then examined treatment effectiveness by in vivo pressure-volume measurement, echocardiography, histology, and immunohistochemistry. Our results showed that compared with other treatment groups, only the MSC-seeded bioscaffold group resulted in RV functional improvement, including restored stroke volume, cardiac output, and improved stroke work. Diastolic function indicated by end-diastolic pressure-volume relationship was improved by the local MSC treatments or bioscaffold alone. Cardiomyocyte hypertrophy and RV fibrosis were both reduced, and von Willebrand factor expression was restored by the MSC-seeded bioscaffold treatment. Overall, our study suggests a potential new regenerative therapy to rescue the pressure-overload failing RV with persistent pulmonary vascular disease, which may improve quality of life and/or survival of PAH patients. NEW & NOTEWORTHY We explored the effects of mesenchymal stem cell-seeded bioscaffold on right ventricles (RVs) of rats with established pulmonary arterial hypertension (PAH). Some beneficial effects were observed despite persistent PAH, suggesting that this may be a new therapy for RV to improve quality of life and/or survival of PAH patients.


Asunto(s)
Presión Arterial , Hipertrofia Ventricular Derecha/cirugía , Trasplante de Células Madre Mesenquimatosas/métodos , Hipertensión Arterial Pulmonar/cirugía , Arteria Pulmonar/fisiopatología , Andamios del Tejido , Disfunción Ventricular Derecha/cirugía , Función Ventricular Derecha , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipoxia/complicaciones , Indoles , Masculino , Contracción Miocárdica , Miocardio/metabolismo , Miocardio/patología , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Pirroles , Ratas Sprague-Dawley , Recuperación de la Función , Regeneración , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/fisiopatología , Remodelación Ventricular , Factor de von Willebrand/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 316(5): H1167-H1177, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30767670

RESUMEN

Left heart failure (LHF) is the most common cause of pulmonary hypertension, which confers an increase in morbidity and mortality in this context. Pulmonary vascular resistance has prognostic value in LHF, but otherwise the mechanical consequences of LHF for the pulmonary vasculature and right ventricle (RV) remain unknown. We sought to investigate mechanical mechanisms of pulmonary vascular and RV dysfunction in a rodent model of LHF to address the knowledge gaps in understanding disease pathophysiology. LHF was created using a left anterior descending artery ligation to cause myocardial infarction (MI) in mice. Sham animals underwent thoracotomy alone. Echocardiography demonstrated increased left ventricle (LV) volumes and decreased ejection fraction at 4 wk post-MI that did not normalize by 12 wk post-MI. Elevation of LV diastolic pressure and RV systolic pressure at 12 wk post-MI demonstrated pulmonary hypertension (PH) due to LHF. There was increased pulmonary arterial elastance and pulmonary vascular resistance associated with perivascular fibrosis without other remodeling. There was also RV contractile dysfunction with a 35% decrease in RV end-systolic elastance and 66% decrease in ventricular-vascular coupling. In this model of PH due to LHF with reduced ejection fraction, pulmonary fibrosis contributes to increased RV afterload, and loss of RV contractility contributes to RV dysfunction. These are key pathologic features of human PH secondary to LHF. In the future, novel therapeutic strategies aimed at preventing pulmonary vascular mechanical changes and RV dysfunction in the context of LHF can be tested using this model. NEW & NOTEWORTHY In this study, we investigate the mechanical consequences of left heart failure with reduced ejection fraction for the pulmonary vasculature and right ventricle. Using comprehensive functional analyses of the cardiopulmonary system in vivo and ex vivo, we demonstrate that pulmonary fibrosis contributes to increased RV afterload and loss of RV contractility contributes to RV dysfunction. Thus this model recapitulates key pathologic features of human pulmonary hypertension-left heart failure and offers a robust platform for future investigations.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Infarto del Miocardio/fisiopatología , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/fisiopatología , Circulación Pulmonar , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Izquierda , Función Ventricular Derecha , Animales , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/etiología , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/etiología , Hipertensión Arterial Pulmonar/diagnóstico por imagen , Hipertensión Arterial Pulmonar/etiología , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/patología , Volumen Sistólico , Remodelación Vascular , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Derecha/diagnóstico por imagen , Disfunción Ventricular Derecha/etiología , Presión Ventricular
8.
Am J Respir Crit Care Med ; 198(12): 1549-1558, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29944842

RESUMEN

Rationale: Premature birth affects 10% of live births in the United States and is associated with alveolar simplification and altered pulmonary microvascular development. However, little is known about the long-term impact prematurity has on the pulmonary vasculature.Objectives: Determine the long-term effects of prematurity on right ventricular and pulmonary vascular hemodynamics.Methods: Preterm subjects (n = 11) were recruited from the Newborn Lung Project, a prospectively followed cohort at the University of Wisconsin-Madison, born preterm with very low birth weight (≤1,500 g; average gestational age, 28 wk) between 1988 and 1991. Control subjects (n = 10) from the same birth years were recruited from the general population. All subjects had no known adult cardiopulmonary disease. Right heart catheterization was performed to assess right ventricular and pulmonary vascular hemodynamics at rest and during hypoxic and exercise stress.Measurements and Main Results: Preterm subjects had higher mean pulmonary arterial pressures (mPAPs), with 27% (3 of 11) meeting criteria for borderline pulmonary hypertension (mPAP, 19-24 mm Hg) and 18% (2 of 11) meeting criteria for overt pulmonary hypertension (mPAP ≥ 25 mm Hg). Pulmonary vascular resistance and elastance were higher at rest and during exercise, suggesting a stiffer vascular bed. Preterm subjects were significantly less able to augment cardiac index or right ventricular stroke work during exercise. Among neonatal characteristics, total ventilatory support days was the strongest predictor of adult pulmonary pressure.Conclusions: Young adults born preterm demonstrate early pulmonary vascular disease, characterized by elevated pulmonary pressures, a stiffer pulmonary vascular bed, and right ventricular dysfunction, consistent with an increased risk of developing pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar/epidemiología , Pulmón/irrigación sanguínea , Enfermedades Vasculares/epidemiología , Adulto , Factores de Edad , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Estudios Prospectivos
9.
Am J Respir Crit Care Med ; 198(4): e15-e43, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30109950

RESUMEN

BACKGROUND: Right ventricular (RV) adaptation to acute and chronic pulmonary hypertensive syndromes is a significant determinant of short- and long-term outcomes. Although remarkable progress has been made in the understanding of RV function and failure since the meeting of the NIH Working Group on Cellular and Molecular Mechanisms of Right Heart Failure in 2005, significant gaps remain at many levels in the understanding of cellular and molecular mechanisms of RV responses to pressure and volume overload, in the validation of diagnostic modalities, and in the development of evidence-based therapies. METHODS: A multidisciplinary working group of 20 international experts from the American Thoracic Society Assemblies on Pulmonary Circulation and Critical Care, as well as external content experts, reviewed the literature, identified important knowledge gaps, and provided recommendations. RESULTS: This document reviews the knowledge in the field of RV failure, identifies and prioritizes the most pertinent research gaps, and provides a prioritized pathway for addressing these preclinical and clinical questions. The group identified knowledge gaps and research opportunities in three major topic areas: 1) optimizing the methodology to assess RV function in acute and chronic conditions in preclinical models, human studies, and clinical trials; 2) analyzing advanced RV hemodynamic parameters at rest and in response to exercise; and 3) deciphering the underlying molecular and pathogenic mechanisms of RV function and failure in diverse pulmonary hypertension syndromes. CONCLUSIONS: This statement provides a roadmap to further advance the state of knowledge, with the ultimate goal of developing RV-targeted therapies for patients with RV failure of any etiology.


Asunto(s)
Investigación , Disfunción Ventricular Derecha/diagnóstico , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Derecha/fisiología , Animales , Humanos , Sociedades Médicas , Estados Unidos
12.
Physiology (Bethesda) ; 32(5): 346-356, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28814495

RESUMEN

Accurate and comprehensive evaluation of right ventricular (RV)-pulmonary vascular (PV) interactions is critical to the assessment of cardiopulmonary function, dysfunction, and failure. Here, we review methods of quantifying RV-PV interactions and experimental results from clinical trials as well as large- and small-animal models based on pressure-volume analysis. We conclude by outlining critical gaps in knowledge that should drive future studies.


Asunto(s)
Ventrículos Cardíacos/fisiopatología , Pulmón/irrigación sanguínea , Venas Pulmonares/fisiología , Animales , Humanos
13.
Am J Physiol Heart Circ Physiol ; 315(3): H699-H708, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29882684

RESUMEN

Right ventricular (RV) failure (RVF) is the major cause of death in pulmonary hypertension. Recent studies have characterized changes in RV structure in RVF, including hypertrophy, fibrosis, and abnormalities in mitochondria. Few, if any, studies have explored the relationships between these multiscale structural changes and functional changes in RVF. Pulmonary artery banding (PAB) was used to induce RVF due to pressure overload in male rats. Eight weeks postsurgery, terminal invasive measurements demonstrated RVF with decreased ejection fraction (70 ± 10 vs. 45 ± 15%, sham vs. PAB, P < 0.005) and cardiac output (126 ± 40 vs. 67 ± 32 ml/min, sham vs. PAB, P < 0.05). At the organ level, RV hypertrophy was directly correlated with increased contractility, which was insufficient to maintain ventricular-vascular coupling. At the tissue level, there was a 90% increase in fibrosis that had a direct correlation with diastolic dysfunction measured by reduced chamber compliance ( r2 = 0.43, P = 0.008). At the organelle level, transmission electron microscopy demonstrated an abundance of small-sized mitochondria. Increased mitochondria was associated with increased ventricular oxygen consumption and reduced mechanical efficiency ( P < 0.05). These results demonstrate an association between alterations in mitochondria and RV oxygen consumption and mechanical inefficiency in RVF and a link between fibrosis and in vivo diastolic dysfunction. Overall, this work provides key insights into multiscale RV remodeling in RVF due to pressure overload. NEW & NOTEWORTHY This study explores the functional impact of multiscale ventricular remodeling in right ventricular failure (RVF). It demonstrates correlations between hypertrophy and increased contractility as well as fibrosis and diastolic function. This work quantifies mitochondrial ultrastructural remodeling in RVF and demonstrates increased oxygen consumption and mechanical inefficiency as features of RVF. Direct correlation between mitochondrial changes and ventricular energetics provides insight into the impact of organelle remodeling on organ level function.


Asunto(s)
Hipertrofia Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/fisiopatología , Remodelación Ventricular , Animales , Hipertensión Pulmonar/complicaciones , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/patología , Masculino , Mitocondrias Cardíacas/ultraestructura , Contracción Miocárdica , Ratas , Ratas Wistar , Volumen Sistólico , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/patología
14.
BMC Med Imaging ; 18(1): 55, 2018 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-30577768

RESUMEN

BACKGROUND: While primarily a right heart disease, pulmonary arterial hypertension (PAH) can impact left heart function and aortic flow through a shifted interventricular septum from right ventricular pressure overload and reduced left ventricular preload, among other mechanisms. In this study, we used phase contrast (PC) MRI and a modest exercise challenge to examine the effects of PAH on systemic circulation. While exercise challenges are typically performed with ultrasound in the clinic, MRI exercise studies allow for more reproducible image alignment, more accurate flow quantification, and improved tissue contrast. METHODS: Six PAH patients and fifteen healthy controls (8 older age-matched, 7 younger) exercised in the magnet bore with an MRI-compatible exercise device that allowed for scanning immediately following cessation of exercise. PC scans were performed in the ascending aorta during a breath hold immediately after modest exercise to non-invasively measure stroke volume (SV), cardiac output (CO), aortic peak systolic flow (PSF), and aortic wall stiffness via relative area change (RAC). RESULTS: Images following exercise showed mild blurring, but were high enough quality to allow for segmentation of the aorta. While SV was approximately 30% lower in PAH patients (SVPAH,rest = 67 ± 16 mL; SVPAH,stress = 90 ± 42 mL) than age-matched controls (SV,older,rest = 93 ± 16 mL; SVolder,stress = 133 ± 40 mL) at both rest and following exercise, CO was similar for both groups following exercise (COPAH,stress = 10.8 ± 5.7 L/min; COolder,stress = 11.8 ± 5.0 L/min). This was achieved through a compensatory increase in heart rate in the PAH subjects (74% increase as compared to 29% in age-matched controls). The PAH subjects also demonstrated reduced aortic peak systolic flow relative to the healthy controls (PSFPAH,rest = 309 ± 52 mL/s; PSFolder,rest = 416 ± 114 mL/s; PSFPAH,stress = 388 ± 113 mL/s; PSFolder,stress = 462 ± 176 mL/s). PAH patients and older controls demonstrated stiffer aortic walls when compared to younger controls (RACPAH,rest = 0.15 ± 0.05; RAColder,rest = 0.17 ± 0.05; RACyoung,rest = 0.28 ± 0.08). CONCLUSIONS: PC MRI following a modest exercise challenge was capable of detecting differences in left heart dynamics likely induced from PAH. These results demonstrated that PAH can have a significant influence on systemic flow, even when the patient has no prior left heart disease. Image quantification following exercise could likely be improved in future studies through the implementation of free-breathing or real-time MRI acquisitions. TRIAL REGISTRATION: Retrospectively registered on 02/26/2018 (TRN: NCT03523910 ).


Asunto(s)
Aorta/diagnóstico por imagen , Aorta/fisiopatología , Hipertensión Pulmonar/fisiopatología , Imagen por Resonancia Cinemagnética/métodos , Adulto , Velocidad del Flujo Sanguíneo , Contencion de la Respiración , Gasto Cardíaco , Estudios de Casos y Controles , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Volumen Sistólico , Vectorcardiografía
15.
J Biomech Eng ; 140(8)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30003251

RESUMEN

Right ventricular (RV) failure, which occurs in the setting of pressure overload, is characterized by abnormalities in mechanical and energetic function. The effects of these cell- and tissue-level changes on organ-level RV function are unknown. The primary aim of this study was to investigate the effects of myofiber mechanics and mitochondrial energetics on organ-level RV function in the context of pressure overload using a multiscale model of the cardiovascular system. The model integrates the mitochondria-generated metabolite concentrations that drive intracellular actin-myosin cross-bridging and extracellular myocardial tissue mechanics in a biventricular heart model coupled with simple lumped parameter circulations. Three types of pressure overload were simulated and compared to experimental results. The computational model was able to capture a wide range of cardiovascular physiology and pathophysiology from mild RV dysfunction to RV failure. Our results confirm that, in response to pressure overload alone, the RV is able to maintain cardiac output (CO) and predict that alterations in either RV active myofiber mechanics or RV metabolite concentrations are necessary to decrease CO.


Asunto(s)
Ventrículos Cardíacos , Fenómenos Mecánicos , Modelos Cardiovasculares , Fenómenos Biomecánicos , Enfermedades Cardiovasculares/fisiopatología , Función Ventricular Izquierda
17.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L375-88, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27288487

RESUMEN

17ß-Estradiol (E2) exerts protective effects on right ventricular (RV) function in pulmonary arterial hypertension (PAH). Since acute exercise-induced increases in afterload may lead to RV dysfunction in PAH, we sought to determine whether E2 allows for superior RV adaptation after an acute exercise challenge. We studied echocardiographic, hemodynamic, structural, and biochemical markers of RV function in male and female rats with sugen/hypoxia (SuHx)-induced pulmonary hypertension, as well as in ovariectomized (OVX) SuHx females, with or without concomitant E2 repletion (75 µg·kg(-1)·day(-1)) immediately after 45 min of treadmill running at 75% of individually determined maximal aerobic capacity (75% aerobic capacity reserve). Compared with males, intact female rats exhibited higher stroke volume and cardiac indexes, a strong trend for better RV compliance, and less pronounced increases in indexed total pulmonary resistance. OVX abrogated favorable RV adaptations, whereas E2 repletion after OVX markedly improved RV function. E2's effects on pulmonary vascular remodeling were complex and less robust than its RV effects. Postexercise hemodynamics in females with endogenous or exogenous E2 were similar to hemodynamics in nonexercised controls, whereas OVX rats exhibited more severely altered postexercise hemodynamics. E2 mediated inhibitory effects on RV fibrosis and attenuated increases in RV collagen I/III ratio. Proapoptotic signaling, endothelial nitric oxide synthase phosphorylation, and autophagic flux markers were affected by E2 depletion and/or repletion. Markers of impaired autophagic flux correlated with endpoints of RV structure and function. Endogenous and exogenous E2 exerts protective effects on RV function measured immediately after an acute exercise challenge. Harnessing E2's mechanisms may lead to novel RV-directed therapies.


Asunto(s)
Estradiol/fisiología , Hipertensión Pulmonar/fisiopatología , Adaptación Fisiológica , Animales , Presión Arterial , Autofagia , Estradiol/farmacología , Femenino , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/fisiopatología , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Consumo de Oxígeno , Esfuerzo Físico , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas Sprague-Dawley , Caracteres Sexuales , Volumen Sistólico , Remodelación Vascular , Disfunción Ventricular Derecha , Función Ventricular Derecha , Presión Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA