RESUMEN
Alzheimer's disease is the most frequent form of dementia in aging population and is presently the world's sixth largest cause of mortality. With the advancement of therapies, several solutions have been developed such as passive immunotherapy against these misfolded proteins, thereby resulting in the clearance. Within this segment, encapsulated cell therapy (ECT) solutions that utilize antibody releasing cells have been proposed with a multitude of techniques under development. Hence, in this study, we utilized our novel and patented Microtube Array Membranes (MTAMs) as an encapsulating platform system with anti-pTau antibody-secreting hybridoma cells to study the impact of it on Alzheimer's disease. In vivo results revealed that in the water maze, the mice implanted with hybridoma cell MTAMs intracranially (IN) and subcutaneously (SC) showed improvement in the time spent the goal quadrant and escape latency. In passive avoidance, hybridoma cell loaded MTAMs (IN and SC) performed significantly well in step-through latency. At the end of treatment, animals with hybridoma cell loaded MTAMs had lower phosphorylated tau (pTau) expression than empty MTAMs had. Combining both experimental results unveiled that the clearance of phosphorylated tau might rescue the cognitive impairment associated with AD.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Inmunización Pasiva , Ratones , Tecnología , Proteínas tau/genética , Proteínas tau/metabolismoRESUMEN
Antibiotics without selectivity for acne treatment may destroy the beneficial microbes in the human microbiome that helps to fight Cutibacterium acnes (C. acnes), a bacterium associated with inflammatory acne vulgaris. Probiotic treatment by direct application of live Staphylococcus epidermidis (S. epidermidis) onto the open acne lesions may run the risk of bloodstream infections. Here, we fabricated the polysulfone microtube array membranes (PSF MTAM) to encapsulate probiotic S. epidermidis. We demonstrate that the application of the encapsulation of S. epidermidis in PSF MTAM enhanced the glycerol fermentation activities of S. epidermidis. To mimic the granulomatous type of acne inflammatory acne vulgaris, the ears of mice were injected intradermally with C. acnes to induce the secretion of macrophage inflammatory protein-2 (MIP-2), a murine counterpart of human interleukin (IL)-8. The C. acnes-injected mouse ears were covered with a PST MTAM encapsulated with or without S. epidermidis in the presence of glycerol. The application of S. epidermidis-encapsulated PST MTAM plus glycerol onto the C. acnes-injected mouse ears considerably reduced the growth of C. acnes and the production of MIP-2. Furthermore, no S. epidermidis leaked from PSF MTAM into mouse skin. The S. epidermidis-encapsulated PST MTAM functions as a probiotic acne patch.
Asunto(s)
Antibiosis , Probióticos , Propionibacteriaceae/fisiología , Piel/microbiología , Staphylococcus epidermidis/fisiología , Animales , Quimiocina CXCL2/metabolismo , Dermatitis/metabolismo , Dermatitis/microbiología , Fermentación , Glicerol/metabolismo , Humanos , RatonesRESUMEN
Recently, a novel substrate known as an electrospun polylactic acid (PLLA) microtube array membrane (MTAM) was successfully developed as a cell coculture platform. Structurally, this substrate is made up of one-to-one connected, ultrathin, submicron scale fibers that are arranged in an arrayed formation. Its unique structure confers several key advantages which are beneficial in a cell coculture system. In this study, the interaction between rat fetal neural stem cells (NSC) and astrocytes was examined by comparing the outcome of a typical Transwell-based coculture system and that of an electrospun PLLA MTAM-based coculture system. Compared to tissue culture polystyrene (TCP) and Transwell coculture inserts, a superior cell viability of NSC was observed when cultured in lumens of electrospun PLLA MTAM (with supportive immunostaining images). Reverse transcription polymerase chain reaction revealed a strong interaction between astrocytes and NSC through a higher expression of doublecortin and a lower expression of nestin. These data demonstrate that MTAM is clearly a better coculture platform than the traditional Transwell system.
Asunto(s)
Astrocitos/química , Regeneración Nerviosa/fisiología , Ingeniería de Tejidos/métodos , Animales , Técnicas de Cocultivo , Proteína Doblecortina , Humanos , RatasRESUMEN
Encapsulated cell therapy (ECT) shows significant potential for treating neurodegenerative disorders including Alzheimer's and Parkinson's, which currently lack curative medicines and must be managed symptomatically. This novel technique encapsulates functional cells with a semi-permeable membrane, providing protection while enabling critical nutrients and therapeutic substances to pass through. Traditional ECT procedures, on the other hand, pose difficulties in terms of cell survival and retrieval. We introduce the Microtube Array Membrane (MTAM), a revolutionary technology that solves these constraints, in this comprehensive overview. Microtube Array Membrane has distinct microstructures that improve encapsulated cells' long-term viability by combining the advantages of macro and micron scales. Importantly, the MTAM platform improves biosafety by allowing the entire encapsulated unit to be retrieved in the event of an adverse reaction. Our findings show that MTAM-based ECT has a great potential in a variety of illness situations. For cancer treatment, hybridoma cells secreting anti-CEACAM 6 antibodies inhibit triple-negative breast cancer cell lines for an extended period of time. In animal brain models of Alzheimer's disease, hybridoma cells secreting anti-pTau antibodies successfully reduce pTau buildup, accompanied by improvements in memory performance. In mouse models, MTAM-encapsulated primary cardiac mesenchymal stem cells dramatically improve overall survival and heart function. These findings illustrate the efficacy and adaptability of MTAM-based ECT in addressing major issues such as immunological isolation, cell viability, and patient safety. We provide new possibilities for the treatment of neurodegenerative illnesses and other conditions by combining the potential of ECT with MTAM. Continued research and development in this subject has a lot of promise for developing cell therapy and giving hope to people suffering from chronic diseases.
Asunto(s)
Encéfalo , Tratamiento Basado en Trasplante de Células y Tejidos , Animales , Ratones , Humanos , Transporte Biológico , Línea Celular , Modelos Animales de EnfermedadRESUMEN
Breast cancer is a severe public health problem, and early treatment with powerful anticancer drugs is critical for success. The researchers investigated the clinical results of a novel screening tool termed Microtube Array Membrane Hollow Fiber Assay (MTAM-HFA) in breast cancer patients in this clinical investigation. In all trial participants, the MTAM-HFA was utilized to identify active medicines for the treatment of breast cancer. The MTAM-HFA was shown to be extremely useful in predicting patient response to anticancer medication therapy in this study. Furthermore, the substantial association between the MTAM-HFA screening outcome and the clinical outcome of the respective patients emphasizes the promise of this unique screening technology in discovering effective anticancer medication combinations for the treatment of breast cancer. These findings indicate that the MTAM-HFA has clinical significance and might be a valuable tool in the development of tailored therapy for cancer care. This study provides helpful information for physicians and scientists working on breast cancer therapy research. The potential benefits of employing MTAM-HFA to find accurate therapies for breast cancer patients might lead to enhanced personalized medicine approaches to cancer care, resulting in better patient outcomes. Overall, the MTAM-HFA screening approach has the potential to revolutionize customized cancer therapy, providing hope to both patients and physicians.
RESUMEN
Immunotherapy is one of the most promising forms of cancer treatment. In particular, immune checkpoint blockers (ICBs) represent some of the leading candidates which many drug developers have heavily invested in. During pre-clinical development and prior to human clinical trials, animal tests are a critical component for determining the safety and efficacy of newly developed ICBs for cancer treatment. In this study, we strive to demonstrate the feasibility of using hollow fiber assay microtube array membrane (MTAM-HFA) in the screening of anti-cancer ICBs. The MTAM-HFA process was carried out by encapsulating peripheral blood mononuclear cells (PBMCs) and the target cancer cells (cell lines or primary cells) and subcutaneously implanting them into Balb/C mice. At predetermined time points combination regimens of PD-1/PD-L1+ were administered accordingly and at a predetermined time point, the MTAMs were retrieved, and cell viability assays were carried out. The outcomes of the MTAM-HFA were compared against the clinical outcome of patients. Clinical comparison demonstrated excellent correlation between the screening outcome of MTAM-HFA of PD-1/PD-L1+ combination therapy and the clinical outcome of the lung cancer patients. Basic cell studies revealed that the utilization of MTAM-HFA in PD-1/PD-L1+ combination therapy revealed enhanced T-cell activity upon the administration of the PD-1/PD-L1 drug; thereby resulting in the reduction of tumor cell viability by up to 70%, and the cytotoxic effects by 82%. The outcome was echoed in the in vivo cell studies. This suggested that the MTAM-HFA system is suitable for use in PD-1/PD-L1+ screening and the accuracy, rapidity and cost effectiveness made it extremely suitable for application as a companion diagnostic system in both personalized medicine for cancer treatment and could potentially be applied to screen for candidate compounds in the development of next generation PD-1/PD-L1+ combination therapies.
Asunto(s)
Antígeno B7-H1 , Neoplasias Pulmonares , Animales , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia/métodos , Leucocitos Mononucleares , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Receptor de Muerte Celular Programada 1RESUMEN
Previously, we successfully developed an extracorporeal endotoxin removal device (EERD) that is based on the novel next generation alternating microtube array membrane (MTAM-A) that was superior to the commercial equivalent. In this article, we demonstrated multiple different parameter modifications that led to multiple different types of novel new MTAM structures, which ultimately led to the formation of the MTAM-A. Contrary to the single layered MTAM, the MTAM-A series consisted of a superior packing density fiber connected in a double layered, alternating position which allowed for the greater fiber count to be packed per unit area. The respective MTAM variants were electrospun by utilizing our internally developed tri-axial electrospinning set up to produce the novel microstructures as seen in the respective MTAM variants. A key uniqueness of this study is the ability to produce self-arranged fibers into the respective MTAM variants by utilizing a single spinneret, which has not been demonstrated before. Of the MTAM variants, we observed a change in the microstructure from a single layered MTAM to the MTAM-A series when the ratio of surfactant to shell flow rate approaches 1:1.92. MTAM-A registered the greatest surface area of 2.2 times compared to the traditional single layered MTAM, with the greatest tensile strength at 1.02 ± 0.13 MPa and a maximum elongation of 57.70 ± 9.42%. The MTAM-A was selected for downstream immobilization of polymyxin B (PMB) and assembly into our own internally developed and fabricated dialyzer housing. Subsequently, the entire setup was tested with whole blood spiked with endotoxin; and benchmarked against commercial Toraymyxin fibers of the same size. The results demonstrated that the EERD based on the MTAM-A performed superior to that of the commercial equivalent, registering a rapid reduction of 73.18% of endotoxin (vs. Toraymyxin at 38.78%) at time point 15 min and a final total endotoxin removal of 89.43% (vs. Toraymyxin at 65.03%).
RESUMEN
Coronary artery disease is one of the major diseases that plagues today's modern society. Conventional treatments utilize synthetic vascular grafts such as Dacron® and Teflon® in bypass graft surgery. Despite the wide adaptation, these synthetic grafts are often plagued with weaknesses such as low hemocompatibility, thrombosis, intimal hyperplasia, and risks of graft infection. More importantly, these synthetic grafts are not available at diameters of less than 6 mm. In view of these challenges, we strived to develop and adapt the electrospun Poly Lactic-co-Glycolic Acid (PLGA) Microtube Array Membrane (MTAM) vascular graft for applications smaller than 6 mm in diameter. Homogenously porous PLGA MTAMs were successfully electrospun at 5.5-8.5 kV under ambient conditions. Mechanically, the PLGA MTAMs registered a maximum tensile strength of 5.57 ± 0.85 MPa and Young's modulus value of 1.134 ± 0.01 MPa; while MTT assay revealed that seven-day Smooth Muscle Cells (SMCs) and Human Umbilical Vein Endothelial Cells (HUVECs) registered a 6 times and 2.4 times higher cell viability when cultured in a co-culture setting in medium containing α-1 haptaglobulin. When rolled into a vascular graft, the PLGA MTAMs registered an overall degradation of 82% after 60 days of cell co-culture. After eight weeks of culturing, immunohistochemistry staining revealed the formation of a monolayer of HUVECs with tight junctions on the surface of the PLGA MTAM, and as for the SMCs housed within the lumens of the PLGA MTAMs, a monolayer with high degree of orientation was observed. The PLGA MTAM registered a burst pressure of 1092.2 ± 175.3 mmHg, which was sufficient for applications such as small diameter blood vessels. Potentially, the PLGA MTAM could be used as a suitable substrate for vascular engineering.
RESUMEN
Sepsis is a deadly disease that is widely attributed to endotoxin released by gram-negative bacterial infections often plague emergency care facilities. Conventionally antibiotics and vasopressors are used to treat this disease. Recent treatment protocol shifted to a membrane to remove the offending endotoxin monomer. Despite this shift, membrane-based devices are often extremely costly, hindering accessibility to this life saving medical device. In view of this challenges, we adopted the internally developed polysulfone (PSF) microtube array membrane alternating (MTAM-A) for use in blood sepsis treatment. PSF MTAM-A were with polymyxin B (PMB) molecules immobilized were assembled into an internally developed cartridge housing and subjected to endotoxin removal models with water and blood spiked with 100 EU/ml of endotoxin as the feed solution. Samples were derived at 15, 30, 60, and 120 min and endotoxin levels were determined with limulus amebocyte lysate assay and benchmarked against the commercially available Toraymyxin device. The PSF MTAM-A with 2.3 times the surface area was successfully fabricated and with PMB molecules immobilized, and assembled into a hemoperfusion device. Dynamic endotoxin removal test revealed and overall endotoxin removal capacity of 90% and a superior endotoxin removal efficiency that was significantly higher than that of Toraymyxin (internally conducted and reported). The data suggested that PSF MTAM-A PMB membranes could potentially be applied in future hemoperfusion devices which would be significantly more efficient, compact, and affordable; potentially making such a life-saving medical device widely available to the general public.
Asunto(s)
Hemoperfusión , Lipopolisacáridos/química , Polimixina B/química , Adsorción , HumanosRESUMEN
The treatment of cancer has evolved significantly in recent years with a strong focus on immunotherapy. Encapsulated Cell Therapy (ECT) for immunotherapy-based anti-cancer treatment is a unique niche within this landscape, where molecules such as signaling factors and antibodies produced from cells are encapsulated within a vehicle, with a host amount of benefits in terms of treatment efficacy and reduced side effects. However, traditional ECTs generally lie in two extremes; either a macro scale vehicle is utilized, resulting in a retrievable system but with limited diffusion and surface area, or a micro scale vehicle is utilized, resulting in a system that has excellent diffusion and surface area but is unretrievable in the event of side effects occurring, which greatly compromises the biosafety of patients. In this study we adapted our patented and novel electrospun Polysulfone (PSF) Microtube Array Membranes (MTAMs) as a 'middle' approach to the above dilemma, which possess excellent diffusion and surface area while being retrievable. Hybridoma cells were encapsulated within the PSF MTAMs, where they produced CEACAM6 antibodies to be used in the suppression of cancer cell line A549, MDA-MB-468 and PC 3 (control). In vitro and in vivo studies revealed excellent cell viability of hybridoma cells with continuous secretion of CEACAM6 antibodies which suppressed the MDA-MB-468 throughout the entire 21 days of experiment. Such outcome suggested that the PSF MTAMs were not only an excellent three-dimensional (3D) cell culture substrate but potentially also an excellent vehicle for the application in ECT systems. Future research needs to include a long term in vivo >6 months study before it can be used in clinical applications.
RESUMEN
Microvesicles (MVs) are subcellular physiological vehicles present in all body fluids that mediate the transfer of intercellular information within biological systems and contribute to healthy conditions. MVs have lipid bilayer membranes decorated with multiple ligands that can interact with receptors on target cells, rendering them as promising candidates for targeted delivery. The biotechnology and cell therapy industries are developing MV-based preparations that use this subcellular therapeutic machinery (in a naïve or modified state) for regenerative medicine, as substitutes for intact cell therapy, and as intelligent targeted drug delivery carriers. However, significant production challenges must be overcome before MVs scale-up development, clinical translation, and routine therapeutic application can be realized. The unique expertise developed in the biotechnology industry should facilitate market access to MV-based therapeutics. In this review, the roles of biotechnology and cell therapy industries to manufacture MVs as inherent therapeutic agents or drug delivery systems are summarized. The manufacturing, development, characterization, and regulatory challenges for successful translation are discussed.
Asunto(s)
Biotecnología/métodos , Vesículas Extracelulares/metabolismo , Terapia Molecular Dirigida/métodos , Medicina Regenerativa/métodos , Tecnología Farmacéutica/métodos , Biotecnología/tendencias , Humanos , Medicina Regenerativa/tendencias , Tecnología Farmacéutica/tendenciasRESUMEN
The advent of personalized cancer treatment resulted in the shift from the administration of cytotoxic drugs with broad activity spectrum to a targeted tumor-specific therapy. Aligned to this development, the focus of this study revolved around the application of our novel and patented microtube array membrane (MTAM) in the US National Cancer Institute (NCI) developed an HFA (hollow fiber assay) assay; hereinafter known as MTAM/HFA. Electrospun poly-L-lactic acid (PLLA) MTAM was sterilized and loaded with cell lines/patient derived tumor cells (PDTC) and subcutaneously implanted into the backs of BALB/C mice. Anticancer drugs were administered at the respective time points and the respective MTAMs were retrieved and the viability tumor cells within were quantified with the MTT assay. Results revealed that the MTAMs were excellent culture substrate for various cancer cell lines and PDTCs (patient derived tumor cells). Compared to traditional HFA systems that utilize traditional hollow fibers, MTAM/HFA revealed superior drug sensitivity for a wide range of anticancer drug classes. Additionally, the duration for each test was <14 days; all this while capable of producing similar trend outcome to the current gold-standard xenograft models. These benefits were observed in both the in vitro and in vivo stages, making it a highly practical phenotypic-based solution that could potentially be applied in personalized medicine.
RESUMEN
An important challenge in neuronal tissue engineering is to create innovative tools capable of promoting cellular response in terms of neuronal differentiation and neurite orientation that may be used as investigational platforms for studying neurobiological events and neurodegenerative disorders. A novel membrane bioreactor was created to provide a 3D well-controlled microenvironment for neuronal outgrowth. The bioreactor consisted of poly-L-lactic acid highly aligned microtube array (PLLA-MTA) membranes assembled in parallel within a chamber that establish an intraluminal and an extraluminal compartment whose communication occurs through the pores of the MTA membrane walls. The bioreactor configuration provided a wide surface area for cell adhesion in a small volume, and offered a peculiar arrangement that directed neuronal orientation. The combination of an appropriate membrane porosity, pore interconnectivity and very thin walls ensured optimal indirect perfusion to cell compartment, and enhanced the mass transfer of metabolites and catabolites protecting neurons from shear stress. The PLLA-MTA membrane bioreactor promoted the growth and differentiation of SH-SY5Y cells toward a neuronal phenotype, and guided neurite alignment giving rise to a 3D neuronal tissue-like construct. It provides an innovative platform to study neurobiological phenomena in vitro and by guiding neuronal orientation for repair and/or regeneration.