Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000543

RESUMEN

Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, ß-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following ß-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.


Asunto(s)
Diferenciación Celular , Sistema Enzimático del Citocromo P-450 , Enfermedades Neurodegenerativas , Humanos , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Línea Celular Tumoral , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Tretinoina/farmacología , Tretinoina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroblastoma/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas/metabolismo
2.
Int J Mol Sci ; 21(11)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486438

RESUMEN

The 1-methyl-4-phenylpyridinium (MPP+) is a parkinsonian-inducing toxin that promotes neurodegeneration of dopaminergic cells by directly targeting complex I of mitochondria. Recently, it was reported that some Cytochrome P450 (CYP) isoforms, such as CYP 2D6 or 2E1, may be involved in the development of this neurodegenerative disease. In order to study a possible role for CYP induction in neurorepair, we designed an in vitro model where undifferentiated neuroblastoma SH-SY5Y cells were treated with the CYP inducers ß-naphthoflavone (ßNF) and ethanol (EtOH) before and during exposure to the parkinsonian neurotoxin, MPP+. The toxic effect of MPP+ in cell viability was rescued with both ßNF and EtOH treatments. We also report that this was due to a decrease in reactive oxygen species (ROS) production, restoration of mitochondrial fusion kinetics, and mitochondrial membrane potential. These treatments also protected complex I activity against the inhibitory effects caused by MPP+, suggesting a possible neuroprotective role for CYP inducers. These results bring new insights into the possible role of CYP isoenzymes in xenobiotic clearance and central nervous system homeostasis.


Asunto(s)
Etanol/farmacología , Mitocondrias/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , beta-naftoflavona/farmacología , 1-Metil-4-fenilpiridinio/toxicidad , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Humanos , Cinética , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/farmacología , Isoformas de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Xenobióticos
3.
Int J Mol Sci ; 21(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204339

RESUMEN

The research for innovative treatments against colon adenocarcinomas is still a great challenge. Acacia catechu Willd. heartwood extract (AC) has health-promoting qualities, especially at the gastrointestinal level. This study characterized AC for its catechins content and investigated the apoptosis-enhancing effect in human colorectal adenocarcinoma HT-29 cells, along with its ability to spare healthy tissue. MTT assay was used to describe the time course, concentration dependence and reversibility of AC-mediated cytotoxicity. Cell cycle analysis and AV-PI and DAPI-staining were performed to evaluate apoptosis, together with ROS formation, mitochondrial membrane potential (MMP) changes and caspase activities. Rat ileum and colon rings were tested for their viability and functionality to explore AC effects on healthy tissue. Quantitative analysis highlighted that AC was rich in (±)-catechin (31.5 ± 0.82 mg/g) and (-)-epicatechin (12.5 ± 0.42 mg/g). AC irreversibly decreased cell viability in a concentration-dependent, but not time-dependent fashion. Cytotoxicity was accompanied by increases in apoptotic cells and ROS, a reduction in MMP and increases in caspase-9 and 3 activities. AC did not affect rat ileum and colon rings' viability and functionality, suggesting a safe profile toward healthy tissue. The present findings outline the potential of AC for colon cancer treatment.


Asunto(s)
Acacia/química , Apoptosis/efectos de los fármacos , Catequina/farmacología , Extractos Vegetales/farmacología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Relación Dosis-Respuesta a Droga , Células HT29 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo
4.
Vascul Pharmacol ; 143: 106969, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35149209

RESUMEN

Sdox is a synthetic H2S-releasing doxorubicin (Dox) less cardiotoxic and more effective than Dox in pre-clinical, Dox-resistant tumour models. The well-known anthracycline vascular toxicity, however, might limit Sdox clinical use. This study aimed at evaluating Sdox vascular toxicity in vitro, using Dox as reference compound. Both vascular smooth muscle A7r5 and endothelial EA.hy926 cells were more sensitive to Dox than Sdox, although both drugs equally increased intracellular free radical levels. Sdox released H2S in both cell lines. The H2S scavenger hydroxocobalamin partially reverted Sdox-induced cytotoxicity in A7r5, but not in EA.hy926 cells, suggesting a role for H2S in smooth muscle cell death. Markers of Sdox-induced apoptosis were significantly lower than, in A7r5 cells, and comparable to those of Dox in EA.hy926 cells. In A7r5 cells, Dox increased the activity of caspase 3, 8, and 9, Sdox affecting only that of caspase 3. Moreover, both drugs induced comparable DNA damage in A7r5 cells, while Sdox was less toxic than Dox in Ea.hy926 cells. In fresh aorta rings, only Dox weakly increased phenylephrine-induced contraction when endothelium was present. In rings cultured with both drugs for 7 days, Sdox blunted phenylephrine- and high K+-induced contractions though at a concentration 10-fold higher than that of Dox. In conclusion, Sdox may represent the prototype of an innovative anthracycline, effective against Dox-resistant tumours, displaying a more favourable vascular toxicity profile compared to the parent compound.


Asunto(s)
Antraciclinas , Antibióticos Antineoplásicos , Antraciclinas/metabolismo , Antraciclinas/farmacología , Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Músculo Liso Vascular , Miocitos del Músculo Liso/metabolismo
5.
Antioxidants (Basel) ; 10(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34943065

RESUMEN

Compounds of natural origin may constitute an interesting tool for the treatment of neuroblastoma, the most prevalent extracranial solid tumor in children. PRES is a commercially available food supplement, composed of a 13:2 (w/w) extracts mix of Olea europaea L. leaves (OE) and Hibiscus sabdariffa L. flowers (HS). Its potential towards neuroblastoma is still unexplored and was thus investigated in human neuroblastoma SH-SY5Y cells. PRES decreased the viability of cells in a concentration-dependent fashion (24 h IC50 247.2 ± 31.8 µg/mL). Cytotoxicity was accompanied by an increase in early and late apoptotic cells (AV-PI assay) and sub G0/G1 cells (cell cycle analysis), ROS formation, reduction in mitochondrial membrane potential, and caspases activities. The ROS scavenger N-acetyl-L-cysteine reverted the cytotoxic effects of PRES, suggesting a key role played by ROS in PRES-mediated SH-SY5Y cell death. Finally, the effects of OE and HS extracts were singularly tested and compared to those of the corresponding mixture. OE- or HS-mediated cytotoxicity was always significantly lower than that caused by PRES, suggesting a synergic effect. In conclusion, the present findings highlight the potential of PRES for the treatment of neuroblastoma and offers the basis for a further characterization of the mechanisms underlying its effects.

6.
Antioxidants (Basel) ; 11(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35052585

RESUMEN

Oxidative stress (OS) and the resulting reactive oxygen species (ROS) generation and inflammation play a pivotal role in the neuronal loss occurring during the onset of neurodegenerative diseases. Therefore, promising future drugs that would prevent or slow down the progression of neurodegeneration should possess potent radical-scavenging activity. Acacia catechu Willd. heartwood extract (AC), already characterized for its high catechin content, is endowed with antioxidant properties. The aim of the present study was to assess AC neuroprotection in both human neuroblastoma SH-SY5Y cells and rat brain slices treated with hydrogen peroxide. In SH-SY5Y cells, AC prevented a decrease in viability, as well as an increase in sub-diploid-, DAPI positive cells, reduced ROS formation, and recovered the mitochondrial potential and caspase-3 activation. AC related neuroprotective effects also occurred in rat brain slices as a reversal prevention in the expression of the main proteins involved in apoptosis and signalling pathways related to calcium homeostasis following OS-mediated injury. Additionally, unbiased quantitative mass spectrometry allowed for assessing that AC partially prevented the hydrogen peroxide-induced altered proteome, including proteins belonging to the synaptic vesicle fusion apparatus. In conclusion, the present results suggest the possibility of AC as a nutraceutical useful in preventing neurodegenerative diseases.

7.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882797

RESUMEN

Oxidative stress (OS) arising from tissue redox imbalance, critically contributes to the development of neurodegenerative disorders. Thus, natural compounds, owing to their antioxidant properties, have promising therapeutic potential. Pres phytum (PRES) is a nutraceutical product composed of leaves- and flowers-extracts of Olea europaea L. and Hibiscus sabdariffa L., respectively, the composition of which has been characterized by HPLC coupled to a UV-Vis and QqQ-Ms detector. As PRES possess antioxidant, antiapoptotic and anti-inflammatory properties, the aim of this study was to assess its neuroprotective effects in human neuroblastoma SH-SY5Y cells and in rat brain slices subjected to OS. PRES (1-50 µg/mL) reverted the decrease in viability as well as the increase in sub-diploid-, DAPI-and annexin V-positive-cells, reduced ROS formation, recovered the mitochondrial potential and caspase-3 and 9 activity changes caused by OS. PRES (50-100 µg/mL) neuroprotective effects occurred also in rat brain slices subjected to H2O2 challenge. Finally, as the neuroprotective potential of PRES is strictly related to its penetration into the brain and a relatively good pharmacokinetic profile, an in-silico prediction of its components drug-like properties was carried out. The present results suggest the possibility of PRES as a nutraceutical, which could help in preventing neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA