Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCI Insight ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325548

RESUMEN

Macrophages contribute to the induction and resolution of inflammation and play a central role in chronic low-grade inflammation in cardiovascular diseases caused by atherosclerosis. Human milk oligosaccharides (HMOs) are complex unconjugated glycans unique to human milk that benefit infant health and act as innate immune modulators. Here, we identify the HMO 3'sialyllactose (3'SL) as a natural inhibitor of Toll-Like Receptor (TLR) 4-induced low-grade inflammation in macrophages and endothelium. Transcriptome analysis in macrophages revealed that 3'SL attenuates mRNA levels of a selected set of inflammatory genes and promotes the activity of Liver X Receptor (LXR) and Sterol Regulatory Element-binding Protein-1 (SREBP). These acute anti-inflammatory effects of 3'SL were associated with reduced histone H3K27 acetylation at a subset of lipopolysaccharide (LPS)-inducible enhancers distinguished by preferential enrichment for CCCTC-binding factor (CTCF), Interferon Regulatory Factor 2 (IRF2), B-cell lymphoma 6 (BCL6), and other transcription factor recognition motifs. In a murine atherosclerosis model, both subcutaneous and oral administration of 3'SL significantly reduced atherosclerosis development and the associated inflammation. This study provides evidence that 3'SL attenuates inflammation by a transcriptional mechanism to reduce atherosclerosis development in the context of cardiovascular disease.

2.
Curr Opin Biotechnol ; 51: 64-69, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29223005

RESUMEN

To meet the ever-growing demand for effective, safe, and affordable protein therapeutics, decades of intense efforts have aimed to maximize the quantity and quality of recombinant proteins produced in CHO cells. Bioprocessing innovations and cell engineering efforts have improved product titer; however, uncharacterized cellular processes and gene regulatory mechanisms still hinder cell growth, specific productivity, and protein quality. Herein, we summarize recent advances in systems biology and data-driven approaches aiming to unravel how molecular pathways, cellular processes, and extrinsic factors (e.g. media supplementation) influence recombinant protein production. In particular, as the available omics data for CHO cells continue to grow, predictive models and screens will be increasingly used to unravel the biological drivers of protein production, which can be used with emerging genome editing technologies to rationally engineer cells to further control the quantity, quality and affordability of many biologic drugs.


Asunto(s)
Ingeniería Celular/métodos , Proteínas Recombinantes/biosíntesis , Biología de Sistemas/métodos , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/genética
3.
Curr Opin Struct Biol ; 40: 104-111, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27639240

RESUMEN

Diverse glycans on proteins impact cell and organism physiology, along with drug activity. Since many protein-based biotherapeutics are glycosylated and these glycans have biological activity, there is a desire to engineer glycosylation for recombinant protein-based biotherapeutics. Engineered glycosylation can impact the recombinant protein efficacy and also influence many cell pathways by first changing glycan-protein interactions and consequently modulating disease physiologies. However, its complexity is enormous. Recent advances in glycoengineering now make it easier to modulate protein-glycan interactions. Here, we discuss how engineered glycans contribute to therapeutic monoclonal antibodies (mAbs) in the treatment of cancers, how these glycoengineered therapeutic mAbs affect the transformed phenotypes and downstream cell pathways. Furthermore, we suggest how systems biology can help in the next generation mAb glycoengineering process by aiding in data analysis and guiding engineering efforts to tailor mAb glycan and ultimately drug efficacy, safety and affordability.


Asunto(s)
Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Neoplasias/fisiopatología , Polisacáridos/metabolismo , Ingeniería de Proteínas/métodos , Animales , Anticuerpos Monoclonales/uso terapéutico , Humanos , Neoplasias/metabolismo , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA