Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Nanobiotechnology ; 22(1): 470, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118029

RESUMEN

Thrombotic cardiovascular diseases are a prevalent factor contributing to both physical impairment and mortality. Thrombolysis and ischemic mitigation have emerged as leading contemporary therapeutic approaches for addressing the consequences of ischemic injury and reperfusion damage. Herein, an innovative cellular-cloaked spermatozoon-driven microcellular submarine (SPCS), comprised of multimodal motifs, was designed to integrate nano-assembly thrombolytics with an immunomodulatory ability derived from innate magnetic hyperthermia. Rheotaxis-based navigation was utilized to home to and cross the clot barrier, and finally accumulate in ischemic vascular organs, where the thrombolytic motif was "switched-on" by the action of thrombus magnetic red blood cell-driven magnetic hyperthermia. In a murine model, the SPCS system combining innate magnetic hyperthermia demonstrated the capacity to augment delivery efficacy, produce nanotherapeutic outcomes, exhibit potent thrombolytic activity, and ameliorate ischemic tissue damage. These findings underscore the multifaceted potential of our designed approach, offering both thrombolytic and ischemia-mitigating effects. Given its extended therapeutic effects and thrombus-targeting capability, this biocompatible SPCS system holds promise as an innovative therapeutic agent for enhancing efficacy and preventing risks after managing thrombosis.


Asunto(s)
Isquemia , Espermatozoides , Trombosis , Animales , Masculino , Ratones , Isquemia/terapia , Espermatozoides/efectos de los fármacos , Trombosis/tratamiento farmacológico , Terapia Trombolítica/métodos , Hipertermia Inducida/métodos , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Fibrinolíticos/química , Humanos , Ratones Endogámicos C57BL
2.
Phys Chem Chem Phys ; 18(42): 29300-29307, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27731868

RESUMEN

Passivation of surface states is known to reduce the onset photocurrent potential by removing the Fermi level pinning effect at the Helmholtz layer and enhance the photocurrent plateau by suppressing recombination loss in the space charge region. We report for the first time that metal ions can effectively passivate surface states in situ that improves the photoelectrochemical (PEC) performance of hematite electrodes. Among metal ions studied, Cr(iii), Mn(ii), Fe(ii), Co(ii), Cu(ii) and Zn(ii) were found to enhance the photocurrent by 30-300%; whereas photocurrent density significantly dropped by 90% in Ni(ii) solution after 90 min of illumination. We further hypothesized that the surface states might be the high affinity adsorption sites on hematite surfaces. Once the surface states are occupied by metal ions, along with the Schottky barrier effect at the hematite/electrolyte interface formed by adsorbed metal ions, the PEC performance is enhanced. Our results also enable the design of a potential PEC based water treatment method to extract additional energy, for example, in the brines (containing concentrated metal ions and electrolyte) of membrane processed wastewater.

3.
Environ Monit Assess ; 188(3): 180, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26899028

RESUMEN

The elemental content of fish scales is known to be a reliable biogeochemical tag for tracing the origin of fishes. In this study, this correlation is further confirmed to exist on the surface of fish scales using a novel environmental analytical method, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), which bypasses several complicated sample preparation procedures such as acid digestion and pre-concentration. The results suggest that the elemental ratios of Sr/Ca, Ba/Ca, and Mn/Ca on the surface of fish scales are strongly correlated with the geochemical environment of their original habitat. This correlation is further demonstrated to be sensitive to variation of water in the habitat due to the adsorbed inorganic ions. In this sense, the limitation of fish scales as a biogeochemical tag is the sensitivity of LA-ICP-MS toward the studied elements. Graphical abstract Illustration of the connection between element distribution pattern over the surface of fish scales and biogeochemical environment of its habitat.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Peces/metabolismo , Oligoelementos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Ambiente , Espectrometría de Masas , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
4.
Adv Healthc Mater ; : e2401383, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155411

RESUMEN

Thrombosis presents a critical health threat globally, with high mortality and incidence rates. Clinical treatment faces challenges such as low thrombolytic agent bioavailability, thrombosis recurrence, ischemic hypoxia damage, and neural degeneration. This study developed biocompatible Chlamydomonas Reinhardtii micromotors (CHL) with photo/magnetic capabilities to address these needs. These CHL micromotors, equipped with phototaxis and photosynthesis abilities, offer promising solutions. A core aspect of this innovation involves incorporating polysaccharides (glycol chitosan (GCS) and fucoidan (F)) into ferric Metal-organic frameworks (MOFs), loaded with urokinase (UK), and subsequently self-assembled onto the multimodal CHL, forming a core-shell microstructure (CHL@GCS/F-UK-MOF). Under light-navigation, CHL@GCS/F-UK-MOF is shown to penetrate thrombi, enhancing thrombolytic biodistribution. Combining CHL@GCS/F-UK-MOF with the magnetic hyperthermia technique achieves stimuli-responsive multiple-release, accelerating thrombolysis and rapidly restoring blocked blood vessels. Moreover, this approach attenuates thrombi-induced ischemic hypoxia disorder and tissue damage. The photosynthetic and magnetotherapeutic properties of CHL@GCS/F-UK-MOF, along with their protective effects, including reduced apoptosis, enhanced behavioral function, induced Heat Shock Protein (HSP), polarized M2 macrophages, and mitigated hypoxia, are confirmed through biochemical, microscopic, and behavioral assessments. This multifunctional biomimetic platform, integrating photo-magnetic techniques, offers a comprehensive approach to cardiovascular management, advancing related technologies.

5.
ACS Appl Mater Interfaces ; 15(27): 32967-32983, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37384742

RESUMEN

Due to the mortality associated with thrombosis and its high recurrence rate, there is a need to investigate antithrombotic approaches. Noninvasive site-specific thrombolysis is a current approach being used; however, its usage is characterized by the following limitations: low targeting efficiency, poor ability to penetrate clots, rapid half-life, lack of vascular restoration mechanisms, and risk of thrombus recurrence that is comparable to that of traditional pharmacological thrombolysis agents. Therefore, it is vital to develop an alternative technique that can overcome the aforementioned limitations. To this end, a cotton-ball-shaped platelet (PLT)-mimetic self-assembly framework engineered with a phototherapeutic poly(3,4-ethylenedioxythiophene) (PEDOT) platform has been developed. This platform is capable of delivering a synthetic peptide derived from hirudin P6 (P6) to thrombus lesions, forming P6@PEDOT@PLT nanomotors for noninvasive site-specific thrombolysis, effective anticoagulation, and vascular restoration. Regulated by P-selectin mediation, the P6@PEDOT@PLT nanomotors target the thrombus site and subsequently rupture under near-infrared (NIR) irradiation, achieving desirable sequential drug delivery. Furthermore, the movement ability of the P6@PEDOT@PLT nanomotors under NIR irradiation enables effective penetration deep into thrombus lesions, enhancing bioavailability. Biodistribution analyses have shown that the administered P6@PEDOT@PLT nanomotors exhibit extended circulation time and metabolic capabilities. In addition, the photothermal therapy/photoelectric therapy combination can significantly augment the effectiveness (ca. 72%) of thrombolysis. Consequently, the precisely delivered drug and the resultant phototherapeutic-driven heat-shock protein, immunomodulatory, anti-inflammatory, and inhibitory plasminogen activator inhibitor-1 (PAI-1) activities can restore vessels and effectively prevent rethrombosis. The described biomimetic P6@PEDOT@PLT nanomotors represent a promising option for improving the efficacy of antithrombotic therapy in thrombus-related illnesses.


Asunto(s)
Trombosis , Activador de Tejido Plasminógeno , Humanos , Activador de Tejido Plasminógeno/farmacología , Biomimética , Distribución Tisular , Trombosis/tratamiento farmacológico , Terapia Trombolítica/métodos
6.
Adv Healthc Mater ; 12(24): e2300682, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289540

RESUMEN

Thrombolytic and antithrombotic therapies are limited by short circulation time and the risk of off-target hemorrhage. Integrating a thrombus-homing strategy with photothermal therapy are proposed to address these limitations. Using glycol chitosan, polypyrrole, iron oxide and heparin, biomimicking GCPIH nanoparticles are developed for targeted thrombus delivery and thrombolysis. The nanoassembly achieves precise delivery of polypyrrole, exhibiting biocompatibility, selective accumulation at multiple thrombus sites, and enhanced thrombolysis through photothermal activation. To simulate targeted thrombolysis, a microfluidic model predicting thrombolysis dynamics in realistic pathological scenarios is designed. Human blood assessments validate the precise homing of GCPIH nanoparticles to activated thrombus microenvironments. Efficient near-infrared phototherapeutic effects are demonstrated at thrombus lesions under physiological flow conditions ex vivo. The combined investigations provide compelling evidence supporting the potential of GCPIH nanoparticles for effective thrombus therapy. The microfluidic model also offers a platform for advanced thrombolytic nanomedicine development.


Asunto(s)
Nanopartículas , Trombosis , Humanos , Polímeros/uso terapéutico , Microfluídica , Pirroles , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Trombosis/tratamiento farmacológico , Trombosis/patología , Nanopartículas/uso terapéutico , Terapia Trombolítica
7.
Mater Today Bio ; 23: 100876, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38089433

RESUMEN

A new approach to treating vascular blockages has been developed to overcome the limitations of current thrombolytic therapies. This approach involves biosafety and multimodal plasma-derived theranostic platelet vesicle incorporating iron oxide constructed nano-propellers platformed technology that possesses fluorescent and magnetic features and manifold thrombus targeting modes. The platform is capable of being guided and visualized remotely to specifically target thrombi, and it can be activated using near-infrared phototherapy along with an actuated magnet for magnetotherapy. In a murine model of thrombus lesion, this proposed multimodal approach showed an approximately 80 % reduction in thrombus residues. Moreover, the new strategy not only improves thrombolysis but also boosts the rate of lysis, making it a promising candidate for time-sensitive thrombolytic therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA