Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biomacromolecules ; 19(9): 3825-3839, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30044907

RESUMEN

Radiotherapy is one of the general approaches to deal with malignant solid tumors in clinical treatment. To improve therapeutic efficacy, chemotherapy is frequently adopted as the adjuvant treatment in combination with radiotherapy. In this work, a reactive oxygen species (ROS)-responsive nanoparticle (NP) drug delivery system was developed to synergistically enhance the antitumor efficacy of radiotherapy by local ROS-activated chemotherapy, taking advantages of the enhanced concentration of reactive oxygen species (ROS) in tumor during X-ray irradiation and/or reoxygenation after X-ray irradiation. The ROS-responsive polymers, poly(thiodiethylene adipate) (PSDEA) and PEG-PSDEA-PEG, were synthesized and employed as the major components assembling in aqueous phase into polymer NPs in which an anticancer camptothecin analogue, SN38, was encapsulated. The drug-loaded NPs underwent structural change including swelling and partial dissociation in response to the ROS activation by virtue of the oxidation of the nonpolar sulfide residues in NPs into the polar sulfoxide units, thus leading to significant drug unloading. The in vitro performance of the chemotherapy from the X-ray irradiation preactivated NPs against BNL 1MEA.7R.1 murine carcinoma cells showed comparable cytotoxicity to free drug and appreciably enhanced effect on killing cancer cells while the X-ray irradiation being incorporated into the treatment. The in vivo tumor growth was fully inhibited with the mice receiving the local dual modality treatment of X-ray irradiation together with SN38-loaded NPs administered by intratumoral injection. The comparable efficacy of the local combinational treatment of X-ray irradiation with SN38-loaded NPs to free SN38/irradiation dual treatment corroborated the effectiveness of ROS-mediated drug release from the irradiated NPs at tumor site. The IHC examination of tumor tissues confirmed the significant reduction of VEGFA and CD31 expression with the tumor receiving the local dual treatment developed in this work, thus accounting for the absence of tumor regrowth compared to other single modality treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Liberación de Fármacos , Irinotecán/administración & dosificación , Nanopartículas/química , Neoplasias Experimentales/terapia , Especies Reactivas de Oxígeno/metabolismo , Adipatos/química , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Quimioradioterapia/métodos , Irinotecán/farmacocinética , Irinotecán/uso terapéutico , Masculino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/efectos de la radiación , Polietilenglicoles/química , Safrol/análogos & derivados , Rayos X
2.
Biomacromolecules ; 17(12): 3883-3892, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27936723

RESUMEN

A novel drug delivery strategy featured with enhanced uptake of nanoparticles (NPs) by targeted tumor cells and subsequent intratumoral cellular hitchhiking of chemotherapy to deep tumor regions was described. The NP delivery system was obtained from assembly of poly(lactic acid-co-glycolic acid)-grafted hyaluronic acid (HA-g-PLGA) together with an anticancer drug, SN38, in aqueous phase, followed by implementing the NP surface with a layer of methoxypoly(ethylene glycol)-b-poly(histamine methacrylamide) (mPEG-b-PHMA) via hydrophobic association to improve the colloidal stability both in vitro and in vivo. Upon arrival of these PEGylated NPs at the acidic tumor site through the EPR effect, mPEG-b-PHMA became detached from the NP surface by the charge transition of the PHMA blocks from neutral (hydrophobic) to positively charged (hydrophilic) state via acid-induced protonation of their imidazole groups in tumor microenvironment. The exposure of HA shell on the naked NP thus resulted in enhanced uptake of NPs by CD44-expressed tumor cells, including cancer cells and tumor-associated macrophages (TAMs). Along with the TAMs being further chemotactically recruited by hypoxia cells, the engulfed nanotherapeutics was thus transported into the avascular area in which the anticancer action of chemotherapy occurred by virtue of the drug release alongside PLGA degradation, similar to those arising in other tumor nonhypoxia regions.


Asunto(s)
Camptotecina/análogos & derivados , Sistemas de Liberación de Medicamentos , Ácido Hialurónico/química , Macrófagos/efectos de los fármacos , Nanopartículas/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/farmacología , Camptotecina/farmacología , Supervivencia Celular/efectos de los fármacos , Irinotecán , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Poliésteres/química , Ácido Poliglicólico/química , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas
3.
Small ; 11(20): 2417-28, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25604032

RESUMEN

Stimuli-responsive drug-delivery systems constitute an appealing approach to direct and restrict drug release spatiotemporally at the specific site of interest. However, it is difficult for most systems to affect every cancer cell in a tumor tissue due to the presence of the natural tumor barrier, leading to potential tumor recurrence. Here, core-shell magnetoresponsive virus-mimetic nanocapsules (VNs), which can infect cancer cells sequentially and double as a magnetothermal agent fabricated through anchoring iron oxide nanoparticles in a single-component protein (lactoferrin) shell, are reported. With large payload of hydrophilic/hydrophobic anticancer cargos, doxorubicin and palictaxel, VNs can simultaneously give a rapid drug release and intense heat while applying an external high-frequency magnetic field (HFMF). Furthermore, after being liberated from dead cells by HFMF manipulation, the constructive VNs can sequentially infect neighboring cancer cells and deliver sufficient therapeutic agents to next targeted sites. With high efficiency for sequential cell infections, VNs have successfully eliminated subcutaneous tumor after a combinatorial treatment. These results demonstrate that the VNs could be used for locally targeted, on-demand, magnetoresponsive chemotherapy/hyperthermia, combined with repeated cell infections for tumor therapy and other therapeutic applications.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Calor , Fenómenos Magnéticos , Nanocápsulas/química , Neoplasias/terapia , Virus/química , Terapia Combinada , Doxorrubicina/farmacología , Células HeLa , Humanos , Nanocápsulas/ultraestructura , Neoplasias/metabolismo , Especificidad de Órganos , Paclitaxel/farmacología
4.
Langmuir ; 31(22): 6202-10, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-25985856

RESUMEN

Indocyanine green (ICG), an FDA approved medical near-infrared (NIR) imaging agent, has been extensively used in cancer theranosis. However, the limited aqueous photostability, rapid body clearance, and poor cellular uptake severely restrict its practical applications. For these problems to be overcome, ICG-encapsulated hybrid polymeric nanomicelles (PNMs) were developed in this work through coassociation of the amphiphilic diblock copolymer poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and hydrophobic electrostatic complexes composed of ICG molecules and branched poly(ethylenimine) (PEI). The ICG-encapsulated hybrid PNMs featured a hydrophobic PLGA/ICG/PEI core stabilized by hydrophilic PEG shells. The encapsulation of electrostatic ICG/PEI complexes into the compact PLGA-rich core not only facilitated the ICG loading but also promoted its aqueous optical stability. The effects of the chain length of PEI in combination with ICG on the physiochemical properties of PNMs and their drug leakage were also investigated. PEI(10k) (10 kDa) could form highly robust and dense complexes with ICG, and thus prominently reduced ICG outflow from the PNMs. The results of in vitro cellular uptake and cytotoxicity studies revealed that the ICG/PEI(10k)-loaded PNMs significantly promoted cellular uptake of ICG by HeLa cells due to their near-neutral surface, and thereby augmented the NIR-triggered hyperthermia effect in destroying cancer cells. These findings strongly indicate that the ICG/PEI10k-loaded PNMs have significant potential for attaining effective cancer imaging and photothermal therapy.


Asunto(s)
Antineoplásicos/farmacología , Verde de Indocianina/química , Verde de Indocianina/farmacología , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Polímeros/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Micelas , Estructura Molecular , Neoplasias/patología , Procesos Fotoquímicos , Fototerapia , Polímeros/química , Temperatura
5.
Nanoscale ; 16(3): 1415-1427, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38167914

RESUMEN

To effectively treat aggressive breast cancer by tumor-activated targetable photothermal chemotherapy, in this work, folate (FA)-modified hybrid polymeric nanoassemblies (HPNs) with a poly(ethylene glycol) (PEG)-detachable capability are developed as vehicles for tumor-targeted co-delivery of IR780, a lipophilic photothermal reagent, and zoledronic acid (ZA), a hydrophilic chemotherapy drug. Through hydrophobic interaction-induced co-assembly, IR780 molecules and ZA/poly(ethylenimine) (PEI) complexes were co-encapsulated into a poly(lactic-co-glycolic acid) (PLGA)-rich core stabilized by the amphiphilic FA-modified D-α-tocopheryl poly(ethylene glycol) succinate (FA-TPGS) and acidity-sensitive PEG-benzoic imine-octadecane (C18) (PEG-b-C18) conjugates. The developed FA-ZA/IR780@HPNs with high ZA and IR780 payloads not only showed excellent colloidal stability in a serum-containing milieu, but also promoted IR780-based photostability and photothermal conversion efficiency. Furthermore, for FA-ZA/IR780@HPNs under simulated physiological conditions, the premature leakage of IR780 and ZA molecules was remarkably declined. In a mimetic acidic tumor microenvironment, the uptake of FA-ZA/IR780@HPNs by FA receptor-overexpressed 4T1 breast cancer cells was remarkably promoted by PEG detachment combined with FA receptor-mediated endocytosis, thus effectively hindering migration of cancer cells and augmenting the anticancer efficacy of photothermal chemotherapy. Notably, the in vivo studies demonstrated that the FA-ZA/IR780@HPNs largely deposited at 4T1 tumor sites and profoundly suppressed tumor growth and metastasis without severe systemic toxicity upon near infrared (NIR)-triggered IR780-mediated hyperthermia integrated with ZA chemotherapy. This work presents a practical strategy to treat aggressive breast tumors with tumor-triggered targetable photothermal chemotherapy using FA-ZA/IR780@HPNs.


Asunto(s)
Neoplasias de la Mama , Síndrome Neurológico de Alta Presión , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Ácido Zoledrónico , Ácido Fólico/química , Síndrome Neurológico de Alta Presión/tratamiento farmacológico , Indoles/química , Fototerapia , Polímeros , Polietilenglicoles/química , Línea Celular Tumoral , Nanopartículas/uso terapéutico , Nanopartículas/química , Microambiente Tumoral
6.
Biomaterials ; 305: 122443, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38160627

RESUMEN

The infiltration of cytotoxic T lymphocytes promises to suppress the most irresistible metastatic tumor for immunotherapy, yet immune privilege and low immunogenic responses in these aggressive clusters often restrict lymphocyte recruitment. Here, an in situ adherent porous organic nanosponge (APON) doubles as organ selection agent and antigen captor to overcome immune privilege is developed. With selective organ targeting, the geometric effect of APON composed of disc catechol-functionalized covalent organic framework (COF) boosts the drug delivery to lung metastases. Along with a self-cascaded immune therapy, the therapeutic agents promote tumor release of damage-associated molecular patterns (DAMPs), and then, in situ deposition of gels to capture these antigens. Furthermore, APON with catechol analogs functions as a reservoir of antigens and delivers autologous DAMPs to detain dendritic cells, resulting in a sustained enhancement of immunity. This disc sponges (APON) at lung metastasis as antigen reservoirs and immune modulators effectively suppress the tumor in 60 days and enhanced the survival rate.


Asunto(s)
Neoplasias Pulmonares , Humanos , Porosidad , Linfocitos T Citotóxicos , Inmunoterapia , Antígenos de Neoplasias , Células Dendríticas , Catecoles
7.
Int J Biol Macromol ; 266(Pt 2): 131359, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580018

RESUMEN

The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.


Asunto(s)
Quitosano , Glutatión , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Terapia Fototérmica , Polietilenglicoles , Quitosano/química , Fotoquimioterapia/métodos , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Glutatión/metabolismo , Polietilenglicoles/química , Ratones , Nanopartículas/química , Terapia Fototérmica/métodos , Línea Celular Tumoral , Verde de Indocianina/química , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Oxígeno Singlete/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Indoles/química , Indoles/farmacología , Polímeros/química
8.
ACS Nano ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952208

RESUMEN

Immunotherapy can potentially suppress the highly aggressive glioblastoma (GBM) by promoting T lymphocyte infiltration. Nevertheless, the immune privilege phenomenon, coupled with the generally low immunogenicity of vaccines, frequently hampers the presence of lymphocytes within brain tumors, particularly in brain tumors. In this study, the membrane-disrupted polymer-wrapped CuS nanoflakes that can penetrate delivery to deep brain tumors via releasing the cell-cell interactions, facilitating the near-infrared II (NIR II) photothermal therapy, and detaining dendritic cells for a self-cascading immunotherapy are developed. By convection-enhanced delivery, membrane-disrupted amphiphilic polymer micelles (poly(methoxypoly(ethylene glycol)-benzoic imine-octadecane, mPEG-b-C18) with CuS nanoflakes enhances tumor permeability and resides in deep brain tumors. Under low-power NIR II irradiation (0.8 W/cm2), the intense heat generated by well-distributed CuS nanoflakes actuates the thermolytic efficacy, facilitating cell apoptosis and the subsequent antigen release. Then, the positively charged polymer after hydrolysis of the benzoic-imine bond serves as an antigen depot, detaining autologous tumor-associated antigens and presenting them to dendritic cells, ensuring sustained immune stimulation. This self-cascading penetrative immunotherapy amplifies the immune response to postoperative brain tumors but also enhances survival outcomes through effective brain immunotherapy.

9.
Langmuir ; 29(21): 6434-43, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23627806

RESUMEN

Hollow hybrid nanogels were prepared first by the coassembly of the citric acid-coated superparamagnetic iron oxide nanoparticles (SPIONs, 44 wt %) with the graft copolymer (56 wt %) comprising acrylic acid and 2-methacryloylethyl acrylate units as the backbone and poly(ethylene glycol) and poly(N-isopropylacrylamide) as the grafts in the aqueous phase of pH 3.0 in the hybrid vesicle structure, followed by in situ covalent stabilization via the photoinitiated polymerization of MEA residues within vesicles. The resultant hollow nanogels, though slightly swollen, satisfactorily retain their structural integrity while the medium pH is adjusted to 7.4. Confining SPION clusters to such a high level (44 wt %) within the pH-responsive thin gel layer remarkably enhances the transverse relaxivity (r2) and renders the MR imaging highly pH-tunable. For example, with the pH being adjusted from 4.0 to 7.4, the r2 value can be dramatically increased from 138.5 to 265.5 mM(-1) s(-1). The DOX-loaded hybrid nanogels also exhibit accelerated drug release in response to both pH reduction and temperature increase as a result of the substantial disruption of the interactions between drug molecules and copolymer components. With magnetic transport guidance toward the target and subsequent exposure to an alternating magnetic field, this DOX-loaded nanogel system possessing combined capabilities of hyperthermia and stimuli-triggered drug release showed superior in vitro cytotoxicity against HeLa cells as compared to the case with only free drug or hyperthermia alone. This work demonstrates that the hollow inorganic/organic hybrid nanogels hold great potential to serve as a multimodal theranostic vehicle functionalized with such desirable features as the guidable delivery of stimuli-mediated diagnostic imaging and hyperthermia/chemotherapies.


Asunto(s)
Antineoplásicos/farmacología , Geles/química , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/química , Neoplasias/tratamiento farmacológico , Compuestos Organometálicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ácido Cítrico/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Férricos/química , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/diagnóstico , Compuestos Organometálicos/química , Tamaño de la Partícula , Polímeros/química , Porosidad , Relación Estructura-Actividad , Propiedades de Superficie
10.
Int J Biol Macromol ; 227: 925-937, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563808

RESUMEN

To effectively promote antitumor potency of doxorubicin (DOX), a regularly used chemotherapy drug, the tumor acidity-responsive polymeric nanomicelles from self-assembly of the as-synthesized amphiphilic benzoic imine-containing PEGylated chitosan-g-poly(lactic-co-glycolic acid) (PLGA) conjugates were developed as vehicles of DOX. The attained PEGylated chitosan-g-PLGA nanomicelles with high PEGylation degree (H-PEG-CSPNs) were characterized to exhibit a "onion-like" core-shell-corona structure consisting of a hydrophobic PLGA core covered by benzoic imine-rich chitosan shell and outer hydrophilic PEG corona. The DOX-carrying H-PEG-CSPNs (DOX@H-PEG-CSPNs) displayed robust colloidal stability under large-volume dilution condition and in a serum-containing aqueous solution of physiological salt concentration. Importantly, the DOX@H-PEG-CSPNs in weak acidic milieu undergoing the hydrolysis of benzoic imine bonds and increased protonation of chitosan shell showed dePEGylation and surface charge conversion. Also, the considerable swelling of protonated chitosan shell within DOX@H-PEG-CSPNs accelerated drug release. Notably, the cellular internalization of DOX@H-PEG-CSPNs by TRAMP-C1 prostate cancer cells under mimic acidic tumor microenvironment was efficiently boosted upon acidity-triggered detachment of PEG corona and exposure of positively-charged chitosan shell, thus augmenting DOX-mediated anticancer effect. Compared to free DOX molecules, the DOX@H-PEG-CSPNs appreciably suppressed TRAMP-C1 tumor growth in vivo, thereby showing great promise in improving DOX chemotherapy.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias , Humanos , Quitosano/uso terapéutico , Cebollas , Polietilenglicoles/química , Micelas , Doxorrubicina/química , Polímeros/química , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Nanopartículas/química , Microambiente Tumoral
11.
J Colloid Interface Sci ; 650(Pt B): 1698-1714, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499626

RESUMEN

Chemodynamic therapy (CDT) has emerged as a promising strategy for tumor treatment. Nevertheless, the low Fenton catalytic efficiency and the high concentration of glutathione (GSH) in cancer cells largely decline antitumor efficacy of CDT. To self-augment antitumor effect of the CDT by combining with photothermal therapy (PTT), the unique photothermal nanozymes that doubly depleted GSH, and generated massive hydroxyl radicals (·OH) in the hyperthermia/acidity-activated manner were developed. Through the coordination of Fe3+ ions with PEGylated chitosan (PEG-CS)-modified polydopamine (PDA) nanoparticles, the attained Fe3+@PEG-CS/PDA nanozymes showed outstanding colloidal stability, photothermal conversion efficiency and acidity-triggered Fe3+ release. By GSH-mediated valence states transition of Fe3+ ions and Michael reaction between GSH and quinone-rich PDA, the nanozymes sufficiently executed dual depletion of GSH with the elevated temperature.Under mimic tumor acidity and near-infrared (NIR) irradiation condition, the endocytosed nanozymes effectively converted intracellular H2O2 into toxic ·OH upon amplified Fenton reaction, thereby potently killing 4T1 cancer cells and RAW 264.7 cells. Importantly, the nanozymes prominently suppressed 4T1 tumor growth in vivo and metastasis of cancer cells by CDT/PTT combination therapy without significant systemic toxicity. Our study provides novel visions in design of therapeutic nanozymes with great clinical translational prospect for tumor treatment.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias , Humanos , Radical Hidroxilo , Peróxido de Hidrógeno , Terapia Combinada , Glutatión , Terapia Fototérmica , Línea Celular Tumoral , Neoplasias/terapia
12.
Carbohydr Polym ; 302: 120390, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604068

RESUMEN

Montmorillonite (MMT) has been frequently utilized as drug vehicles due to its high specific surface area, excellent cation exchange capacity and biocompatibility. However, the significant flocculation of MMT under physiological condition restricted its application to drug delivery. To conquer this problem, the graft-type PEGylated chitosan (PEG-CS) adducts were synthesized as intercalator to stabilize MMT dispersion. Through electrostatic attraction between the chitosan and MMT, the PEG-CS adducts were adsorbed on MMT surfaces and intercalated into MMT. The resulting PEG-CS/MMT nanosheets possessed PEG-rich surfaces, thus showing outstanding dispersion in serum-containing environment. Moreover, the physicochemical characterization revealed that the increased mass ratio of PEG-CS to MMT led to the microstructure transition of PEG-CS/MMT nanosheets from multilayered to exfoliated structure. Interestingly, the PEG-CS/MMT nanosheets with mass ratio of 8.0 in freeze-dried state exhibited a hierarchical lamellar structure organized by the intercalated MMT bundles and unintercalated PEG-CS domains. Notably, the multilayered PEG-CS/MMT nanosheets showed the capability of loading doxorubicin (DOX) superior to the exfoliated counterparts. Importantly, the DOX@PEG-CS/MMT nanosheets endocytosed by TRAMP-C1 cells liberated the drug progressively within acidic organelles, thereby eliciting cell apoptosis. This work provides a new strategy of achieving the controllable dispersion stability of MMT nanoclays towards application potentials in drug delivery.


Asunto(s)
Quitosano , Neoplasias , Humanos , Quitosano/química , Arcilla , Sistemas de Liberación de Medicamentos , Doxorrubicina/farmacología , Doxorrubicina/química , Polietilenglicoles/química
13.
J Control Release ; 358: 718-728, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37230295

RESUMEN

Adoptive T cells and immunotherapy suppress the most destructive metastatic tumors and prevent tumor recurrence by inducing T lymphocytes. However, the heterogeneity and immune privilege of invasive metastatic clusters often reduce immune cell infiltration and therapeutic efficacy. Here, the red blood cells (RBC)-hitchhiking mediated lung metastasis delivery of multi-grained iron oxide nanostructures (MIO) programming the antigen capture, dendritic cell harnessing, and T cell recruitment is developed. MIO is assembled to the surface of RBCs by osmotic shock-mediated fusion, and reversible interactions enable the transfer of MIO to pulmonary capillary endothelial cells by intravenous injection by squeezing RBCs at the pulmonary microvessels. RBC-hitchhiking delivery revealed that >65% of MIOs co-localized in tumors rather than normal tissues. In alternating magnetic field (AMF)-mediated magnetic lysis, MIO leads to the release of tumor-associated antigens, namely neoantigens and damage-associated molecular patterns. It also acted as an antigen capture agent-harnessed dendritic cells delivers these antigens to lymph nodes. By utilizing site-specific targeting, erythrocyte hitchhiker-mediated delivery of MIO to lung metastases improves survival and immune responses in mice with metastatic lung tumors.


Asunto(s)
Células Endoteliales , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/patología , Antígenos de Neoplasias , Pulmón/patología , Células Dendríticas
14.
J Control Release ; 360: 260-273, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37364798

RESUMEN

T lymphocytes served as immune surveillance to suppress metastases by physically interacting with cancer cells. Whereas tumor immune privilege and heterogeneity protect immune attack, it limits immune cell infiltration into tumors, especially in invasive metastatic clusters. Here, a catalytic antigen-capture sponge (CAS) containing the catechol-functionalized copper-based metal organic framework (MOF) and chloroquine (CQ) for programming T cells infiltration is reported. The intravenously injected CAS accumulates at the tumor via the folic acid-mediated target and margination effect. In metastases, Fenton-like reaction induced by copper ions of CAS disrupts the intracellular redox potential, i.e., chemodynamic therapy (CDT), thereby reducing glutathione (GSH) levels. Furthermore, CQ helps inhibit autophagy by inducing lysosomal deacidification during CDT. This process leads to the breakdown of self-defense mechanisms, which exacerbates cytotoxicity. The therapies promote the liberation of tumor-associated antigens, such as neoantigens and damage-associated molecular patterns (DAMPs). Subsequently, the catechol groups present on CAS perform as antigen reservoirs and transport the autologous tumor-associated antigens to dendritic cells, resulting in prolonged immune activation. The CAS, which is capable of forming in-situ, serves as an antigen reservoir in CDT-mediated lung metastasis and leads to the accumulation of immune cells in metastatic clusters, thus hindering metastatic tumors.


Asunto(s)
Neoplasias Pulmonares , Neoplasias , Humanos , Linfocitos T , Cobre , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Inmunoterapia/métodos , Antígenos de Neoplasias , Células Dendríticas , Línea Celular Tumoral
15.
Langmuir ; 28(42): 15056-64, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23036055

RESUMEN

Dual stimuli-responsive hollow nanogel spheres serving as an efficient intracellular drug delivery platform were obtained from the spontaneous coassociation of two graft copolymers into the vesicle architecture in aqueous phase. Both copolymers comprise acrylic acid (AAc) and 2-methacryloylethyl acrylate (MEA) units as the backbone and either poly(N-isopropylacrylamide) (PNIPAAm) alone or both PNIPAAm and monomethoxypoly(ethylene glycol) (mPEG) chain segments as the grafts. The assemblies were then subjected to covalent stabilization within vesicle walls with ester-containing cross-links by radical polymerization of MEA moieties, thereby leading to hollow nanogel particles. Taking the advantage of retaining a low quantity of payload within polymer layer-enclosed aqueous chambers through the entire loading process, doxorubicin (DOX) in the external bulk phase can be effectively transported into the gel membrane and bound therein via electrostatic interactions with ionized AAc residues and hydrogen-bond pairings with PNIPAAm grafts at pH 7.4. With the environmental pH being reduced (e.g., from 7.4 to 5.0) at 37 °C, the extensive disruption of AAc/DOX complexes due to the reduced ionization of AAc residues within the gel layer and the pronounced shrinkage of nanogels enable the rapid release of DOX species from drug-loaded hollow nanogels. By contrast, the drug liberation at 4 °C was severally restricted, particularly at pH 7.4 at which the DOX molecules remain strongly bound with ionized AAc residues and PNIPAAm grafts. The in vitro characterizations suggest that the DOX-loaded hollow nanogel particles after being internalized by HeLa cells via endocytosis can rapidly release the payload within acidic endosomes or lysosomes. This will then lead to significant drug accumulation in nuclei (within 1 h) and a cytotoxic effect comparable to free drug. This work demonstrates that the novel DOX-loaded hollow nanogel particles show great promise of therapeutic efficacy for potential anticancer treatment.


Asunto(s)
Doxorrubicina/química , Portadores de Fármacos/química , Polietilenglicoles/química , Polietileneimina/química , Polímeros/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Estructura Molecular , Nanogeles , Tamaño de la Partícula , Porosidad , Solubilidad , Relación Estructura-Actividad , Propiedades de Superficie , Temperatura
16.
J Mater Chem B ; 10(23): 4363-4374, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35587692

RESUMEN

Zoledronic acid (ZA), a third-generation bisphosphonate, has been extensively used to treat osteoporosis and cancer bone metastasis and demonstrated to suppress proliferation of varied cancer cells and selectively kill tumor-associated microphages (TAMs). However, the clinical applications of ZA in extraskeletal tumor treatment are largely restricted due to its rapid renal clearance and binding to bones. In this study, to promote intracellular delivery of ZA for amplified antitumor efficacy, tumor acidity-responsive polymeric nanoparticles with high ZA payload (ca. 12.3 wt%) and low premature ZA leakage were designed. As a pivotal material for surface coating, the acidity-sensitive and amphiphilic methoxy poly(ethylene glycol) (mPEG)-benzoic imine-octadecane (C18) (mPEG-b-C18) was synthesized by conjugation of mPEG-CHO with 1-octadecylamine upon Schiff base reaction. Through tailor-made co-assembly of the hydrophobic poly(lactic-co-glycolic acid) (PLGA), amphiphilic tocopheryl polyethylene glycol succinate (TPGS) and mPEG-b-C18 to encapsulate ionic complexes composed of ZA molecules and branched poly(ethylenimine) (PEI) segments, the attained therapeutic polymeric nanoparticles, characterized to have a hydrophobic PLGA/ZA/PEI-constituted core covered with mPEG-b-C18 and TPGS, were able to not only detach mPEG shielding upon acidity-triggered hydrolysis of benzoic imine bonds but also expose surface positive charges of protonated PEI segments. The in vitro cellular uptake and cytotoxicity studies demonstrated that the internalization of acidity-sensitive ZA-encapsulated nanoparticles by TRAMP-C1 mouse prostate cancer cells and murine macrophages RAW 264.7 was considerably promoted upon acidity-elicited PEG detachment and surface charge conversion, thus remarkably boosting intracellular ZA delivery and anticancer potency. Compared to PEG non-detachable ZA-loaded nanoparticles with poor tumor deposition and antitumor effect, the PEG-detachable ZA-carrying nanoparticles markedly accumulated in TRAMP-C1 solid tumors in vivo and inhibited tumor growth, thereby increasing the survival rate of the treated mice. The collective data suggest the great promise of tumor acidity-sensitive ZA-carrying hybrid nanoparticles in the treatment of extraskeletal solid tumors.


Asunto(s)
Nanopartículas , Neoplasias , Polietilenglicoles/química , Animales , Iminas , Masculino , Ratones , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico , Polímeros/química , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/uso terapéutico
17.
Pharmaceutics ; 14(3)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35335903

RESUMEN

Nano-catalytic agents actuating Fenton-like reaction in cancer cells cause intratumoral generation of reactive oxygen species (ROS), allowing the potential for immune therapy of tumor metastasis via the recognition of tumor-associated antigens. However, the self-defense mechanism of cancer cells, known as autophagy, and unsustained ROS generation often restricts efficiency, lowering the immune attack, especially in invading metastatic clusters. Here, a functional core-shell metal-organic framework nanocube (dual MOF) doubling as a catalytic agent and T cell infiltration inducer that programs ROS and inhibits autophagy is reported. The dual MOF integrated a Prussian blue (PB)-coated iron (Fe2+)-containing metal-organic framework (MOF, MIL88) as a programmed peroxide mimic in the cancer cells, facilitating the sustained ROS generation. With the assistance of Chloroquine (CQ), the inhibition of autophagy through lysosomal deacidification breaks off the self-defense mechanism and further improves the cytotoxicity. The purpose of this material design was to inhibit autophagy and ROS efficacy of the tumor, and eventually improve T cell recruitment for immune therapy of lung metastasis. The margination and internalization-mediated cancer cell uptake improve the accumulation of dual MOF of metastatic tumors in vivo. The effective catalytic dual MOF integrated dysfunctional autophagy at the metastasis elicits the ~3-fold recruitment of T lymphocytes. Such synergy of T cell recruitment and ROS generation transported by dual MOF during the metastases successfully suppresses more than 90% of tumor foci in the lung.

18.
Int J Biol Macromol ; 210: 565-578, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35513093

RESUMEN

To achieve effective intracellular anticancer drug release for boosted antitumor efficacy, the acidity-responsive nanovehicles for doxorubicin (DOX) delivery were fabricated by tailor-made co-assembly of amphiphilic PEGylated chitosan20k and hydrophobic poly(lactic-co-glycolic acid) (PLGA) segments at pH 8.5. The attained DOX-loaded PEGylated chitosan20k/PLGA nanoparticles (DOX-PC20kPNs) were characterized to have a spherical shape composed of drug-encapsulated chitosan20k/PLGA-constituted solid core surrounded by hydrophilic PEG shells. Compared to non-pH-sensitive DOX-loaded PLGA nanoparticles (DOX-PNs), the DOX-PC20kPNs displayed outstanding colloidal stability under serum-containing condition and tended to swell in weak acidic milieu upon increased protonation of chitosan20k within hybrid cores, thus accelerating drug release. The in vitro cellular uptake and cytotoxicity studies revealed that the DOX-PC20kPNs after being endocytosed by prostate TRAMP-C1 cancer cells rapidly liberated drug, thus promoting drug accumulation in nuclei to enhance anticancer potency. Moreover, the hydrated PEG shells of DOX-PC20kPNs remarkably reduced their uptake by macrophage-like RAW264.7 cells. Importantly, in vivo animal findings showed that the DOX-PC20kPNs exhibited the capability of inhibiting TRAMP-C1 tumor growth superior to free hydrophobic DOX molecules and DOX-PNs, demonstrating the great potential in cancer chemotherapy.


Asunto(s)
Antineoplásicos , Quitosano , Nanopartículas , Neoplasias , Animales , Antineoplásicos/farmacología , Quitosano/química , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Masculino , Nanopartículas/química , Polietilenglicoles/química
19.
Colloids Surf B Biointerfaces ; 208: 112048, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34419806

RESUMEN

In order to boost anticancer efficacy of indocyanine green (ICG)-mediated photothermal therapy (PTT) by promoting intracellular ICG delivery, the ICG-carrying hybrid polymeric nanoparticles were fabricated in this study by co-assembly of hydrophobic poly(lactic-co-glycolic acid) (PLGA) segments, ICG molecules, amphiphilic tocopheryl polyethylene glycol succinate (TPGS) and pH-responsive methoxy poly(ethylene glycol)-benzoic imine-1-octadecanamine (mPEG-b-C18) segments in aqueous solution. The ICG-loaded nanoparticles were characterized to have ICG-containing PLGA core stabilized by hydrophilic PEG-rich surface coating and a well-dispersed spherical shape. Moreover, the ICG-loaded nanoparticles in pH 7.4 aqueous solution sufficiently inhibited ICG self-aggregation and leakage, thereby increasing aqueous photostability of ICG molecules. Notably, when the solution pH was reduced from pH 7.4-5.5, the acid-triggered hydrolysis of benzoic-imine linkers within mPEG-b-C18 remarkably facilitated the detachment of mPEG segments from ICG-loaded nanoparticles, thus accelerating ICG release. The findings of in vitro cellular uptake and cytotoxicity studies further demonstrated that the PEGylated ICG-carrying hybrid nanoparticles were efficiently internalized by MCF-7 cells compared to free ICG and realized intracellular acid-triggered rapid ICG liberation, thus enhancing anticancer effect of ICG-mediated PTT to potently kill cancer cells.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Liberación de Fármacos , Humanos , Verde de Indocianina , Neoplasias/tratamiento farmacológico , Terapia Fototérmica , Polietilenglicoles , Polímeros
20.
J Colloid Interface Sci ; 561: 11-22, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812857

RESUMEN

To expand clinical applications of indocyanine green (ICG) by overcoming its several drawbacks such as self-aggregation under physiological conditions, poor aqueous photostability, lack of target specificity and rapid renal elimination from the body, the functionalized polymeric nanogels with pH-responsive benzoic-imine cross-linkages employed as carriers for ICG delivery were developed by one-step cross-linking of the branched poly(ethylenimine)-g-methoxy poly(ethylene glycol) (PEI-g-mPEG) copolymer with hydrophobic terephthalaldehyde (TPA) molecules in aqueous solution of pH 7.4. Based on the findings of fluorescence, dynamic and static light scattering, and transmission electron microscopy measurements, the resulting polymeric nanogels exhibited a spherical structure comprising multiple hydrophobic benzoic-imine-rich microdomains covered by positively-charged PEI networks capable of holding large amounts of water, and hydrophilic mPEG segments. Moreover, the cross-linking of more TPA molecules with PEI-g-mPEG segments led to the formation of more microdomains inside the polymeric nanogels, thus making the colloidal structure more hydrophobic and compact. More importantly, through the electrostatic attraction of amphiphilic ICG molecules with protonated PEI segments as well as their hydrophobic association with microdomains upon π-π stacking, the ICG species can be efficiently encapsulated into the nanogels. Notably, the robust ICG-loaded nanogels showed several outstanding properties, including (1) significantly enhanced the photo-stability of ICG in phosphate buffer, (2) considerably retarded ICG leakage from nanogels at pH 7.8, (3) acid-triggered ICG release by the cleavage of benzoic-imine bonds in response to pH reduction from 7.8 to 6.4. This work demonstrates that the pH-responsive polymeric nanogels have promising potential for tumor-targeted ICG delivery.


Asunto(s)
Ácido Benzoico/química , Sistemas de Liberación de Medicamentos , Iminas/química , Verde de Indocianina/metabolismo , Nanogeles/química , Polímeros/química , Neoplasias de la Próstata/metabolismo , Animales , Reactivos de Enlaces Cruzados/química , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Verde de Indocianina/administración & dosificación , Verde de Indocianina/química , Masculino , Micelas , Polietilenglicoles/química , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA