Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurolinguistics ; 622022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35002061

RESUMEN

Language and music rely on complex sequences organized according to syntactic principles that are implicitly understood by enculturated listeners. Across both domains, syntactic processing involves predicting and integrating incoming elements into higher-order structures. According to the Shared Syntactic Integration Resource Hypothesis (SSIRH; Patel, 2003), musical and linguistic syntactic processing rely on shared resources for integrating incoming elements (e.g., chords, words) into unfolding sequences. One prediction of the SSIRH is that people with agrammatic aphasia (whose deficits are due to syntactic integration problems) should present with deficits in processing musical syntax. We report the first neural study to test this prediction: event-related potentials (ERPs) were measured in response to musical and linguistic syntactic violations in a group of people with agrammatic aphasia (n=7) compared to a group of healthy controls (n=14) using an acceptability judgement task. The groups were matched with respect to age, education, and extent of musical training. Violations were based on morpho-syntactic relations in sentences and harmonic relations in chord sequences. Both groups presented with a significant P600 response to syntactic violations across both domains. The aphasic participants presented with a reduced-amplitude posterior P600 compared to the healthy adults in response to linguistic, but not musical, violations. Participants with aphasia did however present with larger frontal positivities in response to violations in both domains. Intriguingly, extent of musical training was associated with larger posterior P600 responses to syntactic violations of language and music in both groups. Overall, these findings are not consistent with the predictions of the SSIRH, and instead suggest that linguistic, but not musical, syntactic processing may be selectively impaired in stroke-induced agrammatic aphasia. However, the findings also suggest a relationship between musical training and linguistic syntactic processing, which may have clinical implications for people with aphasia, and motivates more research on the relationship between these two domains.

2.
Neuroimage ; 224: 117374, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32949711

RESUMEN

Functional neuroimaging and lesion-symptom mapping investigations implicate a left frontal-temporal-parietal network for sentence processing. The majority of studies have focused on sentence comprehension, with fewer in the domain of sentence production, which have not fully elucidated overlapping and/or unique brain structures associated with the two domains, particularly for sentences with noncanonical word order. Using voxel-based lesion symptom mapping (VLSM) we examined the relationship between lesions within the left hemisphere language network and both sentence comprehension and production of simple and complex syntactic structures in 76 participants with chronic stroke-induced aphasia. Results revealed shared regions across domains in the anterior and posterior superior temporal gyri (aSTG, pSTG), and the temporal pole (adjusted for verb production/comprehension). Additionally, comprehension was associated with lesions in the anterior and posterior middle temporal gyri (aMTG, pMTG), the MTG temporooccipital regions, SMG/AG, central and parietal operculum, and the insula. Subsequent VLSM analyses (production versus comprehension) revealed critical regions associated with each domain: anterior temporal lesions were associated with production; posterior temporo-parietal lesions were associated with comprehension, implicating important roles for regions within the ventral and dorsal stream processing routes, respectively. Processing of syntactically complex, noncanonical (adjusted for canonical), sentences was associated with damage to the pSTG across domains, with additional damage to the pMTG and IPL associated with impaired sentence comprehension, suggesting that the pSTG is crucial for computing noncanonical sentences across domains and that the pMTG, and IPL are necessary for re-analysis of thematic roles as required for resolution of long-distance dependencies. These findings converge with previous studies and extend our knowledge of the neural mechanisms of sentence comprehension to production, highlighting critical regions associated with both domains, and further address the mechanism engaged for syntactic computation, controlled for the contribution of verb processing.


Asunto(s)
Afasia/fisiopatología , Comprensión/fisiología , Lóbulo Frontal/fisiopatología , Lóbulo Temporal/fisiopatología , Mapeo Encefálico/métodos , Neuroimagen Funcional/métodos , Humanos , Lenguaje , Imagen por Resonancia Magnética/métodos , Masculino , Lóbulo Parietal/fisiopatología
3.
Neuropsychologia ; 151: 107728, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33326758

RESUMEN

Evidence from psycholinguistic research indicates that sentence processing is impaired in Primary Progressive Aphasia (PPA), and more so in individuals with agrammatic (PPA-G) than logopenic (PPA-L) subtypes. Studies have mostly focused on offline sentence production ability, reporting impaired production of verb morphology (e.g., tense, agreement) and verb-argument structure (VAS) in PPA-G, and mixed findings in PPA-L. However, little is known about real-time sentence comprehension in PPA. The present study is the first to compare real-time semantic, morphosyntactic and VAS processing in individuals with PPA (10 with PPA-G and 9 with PPA-L), and in two groups of healthy (22 young and 19 older) individuals, using event-related potentials (ERP). Participants were instructed to listen to sentences that were either well-formed (n = 150) or contained a violation of semantics (e.g., *Owen was mentoring pumpkins at the party, n = 50), morphosyntax (e.g., *The actors was singing in the theatre, n = 50) or VAS (*Ryan was devouring on the couch, n = 50), and were required to perform a sentence acceptability judgment task while EEG was recorded. Results indicated that in the semantic task both healthy and PPA groups showed an N400 response to semantic violations, which was delayed in PPA and older (vs. younger) groups. Morphosyntactic violations elicited a P600 in both groups of healthy individuals and in PPA-L, but not in PPA-G. A similar P600 response was also found only in healthy individuals for VAS violations; whereas, abnormal ERP responses were observed in both PPA groups, with PPA-G showing no evidence of VAS violation detection and PPA-L showing a delayed and abnormally-distributed positive component that was negatively associated with offline sentence comprehension scores. These findings support characterizations of sentence processing impairments in PPA-G, by providing online evidence that VAS and morphosyntactic processing are impaired, in the face of substantially preserved semantic processing. In addition, the results indicate that on-line processing of VAS information may also be impaired in PPA-L, despite their near-normal accuracy on standardized language tests of argument structure production.


Asunto(s)
Afasia Progresiva Primaria , Electroencefalografía , Comprensión , Potenciales Evocados , Femenino , Humanos , Lenguaje , Masculino , Semántica
4.
Front Psychol ; 12: 701802, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912261

RESUMEN

We addressed an understudied topic in the literature of language disorders, that is, processing of derivational morphology, a domain which requires integration of semantic and syntactic knowledge. Current psycholinguistic literature suggests that word processing involves morpheme recognition, which occurs immediately upon encountering a complex word. Subsequent processes take place in order to interpret the combination of stem and affix. We investigated the abilities of individuals with agrammatic (PPA-G) and logopenic (PPA-L) variants of primary progressive aphasia (PPA) and individuals with stroke-induced agrammatic aphasia (StrAg) to process pseudowords which violate either the syntactic (word class) rules (*reheavy) or the semantic compatibility (argument structure specifications of the base form) rules (*reswim). To this end, we quantified aspects of word knowledge and explored how the distinct deficits of the populations under investigation affect their performance. Thirty brain-damaged individuals and 10 healthy controls participated in a lexical decision task. We hypothesized that the two agrammatic groups (PPA-G and StrAg) would have difficulties detecting syntactic violations, while no difficulties were expected for PPA-L. Accuracy and Reaction Time (RT) patterns indicated: the PPA-L group made fewer errors but yielded slower RTs compared to the two agrammatic groups which did not differ from one another. Accuracy rates suggest that individuals with PPA-L distinguish *reheavy from *reswim, reflecting access to and differential processing of syntactic vs. semantic violations. In contrast, the two agrammatic groups do not distinguish between *reheavy and *reswim. The lack of difference stems from a particularly impaired performance in detecting syntactic violations, as they were equally unsuccessful at detecting *reheavy and *reswim. Reduced grammatical abilities assessed through language measures are a significant predictor for this performance, suggesting that the "hardware" to process syntactic information is impaired. Therefore, they can only judge violations semantically where both *reheavy and *reswim fail to pass as semantically ill-formed. This finding further suggests that impaired grammatical knowledge can affect word level processing as well. Results are in line with the psycholinguistic literature which postulates the existence of various stages in accessing complex pseudowords, highlighting the contribution of syntactic/grammatical knowledge. Further, it points to the worth of studying impaired language performance for informing normal language processes.

5.
Cortex ; 120: 394-418, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419597

RESUMEN

This paper examined the effects of treatment on both offline and online sentence processing and associated neuroplasticity within sentence processing and dorsal attention networks in chronic stroke-induced agrammatic aphasia. Twenty-three neurotypical adults and 19 individuals with aphasia served as participants. Aphasic individuals were randomly assigned to receive a 12-week course of linguistically-based treatment of passive sentence production and comprehension (N = 14, treatment group) or to serve as control participants (N = 5, natural history group). Both aphasic groups performed two offline tasks at baseline and three months following (at post-testing) to assess production and comprehension of trained passive structures and untrained syntactically related and unrelated structures. The aphasic participants and a healthy age-matched group also performed an online eyetracking comprehension task and a picture-verification fMRI task, which were repeated at post-testing for the aphasic groups. Results showed that individuals in the treatment, but not in the natural history, group improved on production and comprehension of both trained structures and untrained syntactically related structures. Treatment also resulted in a shift toward more normal-like eye movements and a significant increase in neural activation from baseline to post-testing. Upregulation encompassed right hemisphere regions homologs of left hemisphere regions involved in both sentence processing and domain-general functions and was positively correlated with treatment gains, as measured by offline comprehension accuracy, and with changes in processing strategies during sentence comprehension, as measured by eyetracking. These findings provide compelling evidence in favor of the contribution of both networks within the right hemisphere to the restoration of normal-like sentence processing patterns in chronic aphasia.


Asunto(s)
Afasia/fisiopatología , Atención/fisiología , Encéfalo/fisiopatología , Comprensión/fisiología , Plasticidad Neuronal/fisiología , Recuperación de la Función/fisiología , Accidente Cerebrovascular/fisiopatología , Adulto , Anciano , Afasia/diagnóstico por imagen , Afasia/etiología , Encéfalo/diagnóstico por imagen , Movimientos Oculares/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Percepción del Habla/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA