Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Cell ; 78(3): 459-476.e13, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32240602

RESUMEN

The cyclin-dependent kinase 1 (Cdk1) drives cell division. To uncover additional functions of Cdk1, we generated knockin mice expressing an analog-sensitive version of Cdk1 in place of wild-type Cdk1. In our study, we focused on embryonic stem cells (ESCs), because this cell type displays particularly high Cdk1 activity. We found that in ESCs, a large fraction of Cdk1 substrates is localized on chromatin. Cdk1 phosphorylates many proteins involved in epigenetic regulation, including writers and erasers of all major histone marks. Consistent with these findings, inhibition of Cdk1 altered histone-modification status of ESCs. High levels of Cdk1 in ESCs phosphorylate and partially inactivate Dot1l, the H3K79 methyltransferase responsible for placing activating marks on gene bodies. Decrease of Cdk1 activity during ESC differentiation de-represses Dot1l, thereby allowing coordinated expression of differentiation genes. These analyses indicate that Cdk1 functions to maintain the epigenetic identity of ESCs.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Células Madre Embrionarias/fisiología , Epigénesis Genética , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Proteína Quinasa CDC2/genética , Diferenciación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina/métodos , Femenino , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Noqueados , Fosforilación , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Genome Res ; 32(5): 838-852, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35277432

RESUMEN

Investigation of the molecular mechanisms of aging in the human heart is challenging because of confounding factors, such as diet and medications, as well as limited access to tissues from healthy aging individuals. The laboratory mouse provides an ideal model to study aging in healthy individuals in a controlled environment. However, previous mouse studies have examined only a narrow range of the genetic variation that shapes individual differences during aging. Here, we analyze transcriptome and proteome data from 185 genetically diverse male and female mice at ages 6, 12, and 18 mo to characterize molecular changes that occur in the aging heart. Transcripts and proteins reveal activation of pathways related to exocytosis and cellular transport with age, whereas processes involved in protein folding decrease with age. Additional changes are apparent only in the protein data including reduced fatty acid oxidation and increased autophagy. For proteins that form complexes, we see a decline in correlation between their component subunits with age, suggesting age-related loss of stoichiometry. The most affected complexes are themselves involved in protein homeostasis, which potentially contributes to a cycle of progressive breakdown in protein quality control with age. Our findings highlight the important role of post-transcriptional regulation in aging. In addition, we identify genetic loci that modulate age-related changes in protein homeostasis, suggesting that genetic variation can alter the molecular aging process.


Asunto(s)
Envejecimiento , Proteostasis , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Autofagia/genética , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Proteostasis/genética , Transcriptoma
3.
Nat Chem Biol ; 18(12): 1388-1398, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097295

RESUMEN

The Janus tyrosine kinase (JAK) family of non-receptor tyrosine kinases includes four isoforms (JAK1, JAK2, JAK3, and TYK2) and is responsible for signal transduction downstream of diverse cytokine receptors. JAK inhibitors have emerged as important therapies for immun(onc)ological disorders, but their use is limited by undesirable side effects presumed to arise from poor isoform selectivity, a common challenge for inhibitors targeting the ATP-binding pocket of kinases. Here we describe the chemical proteomic discovery of a druggable allosteric cysteine present in the non-catalytic pseudokinase domain of JAK1 (C817) and TYK2 (C838), but absent from JAK2 or JAK3. Electrophilic compounds selectively engaging this site block JAK1-dependent trans-phosphorylation and cytokine signaling, while appearing to act largely as 'silent' ligands for TYK2. Importantly, the allosteric JAK1 inhibitors do not impair JAK2-dependent cytokine signaling and are inactive in cells expressing a C817A JAK1 mutant. Our findings thus reveal an allosteric approach for inhibiting JAK1 with unprecedented isoform selectivity.


Asunto(s)
Cisteína , Proteómica , Transducción de Señal , Citocinas , Isoformas de Proteínas
4.
Genome Res ; 30(6): 860-873, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32461223

RESUMEN

Little is known about how human Y-Chromosome gene expression directly contributes to differences between XX (female) and XY (male) individuals in nonreproductive tissues. Here, we analyzed quantitative profiles of Y-Chromosome gene expression across 36 human tissues from hundreds of individuals. Although it is often said that Y-Chromosome genes are lowly expressed outside the testis, we report many instances of elevated Y-Chromosome gene expression in a nonreproductive tissue. A notable example is EIF1AY, which encodes eukaryotic translation initiation factor 1A Y-linked, together with its X-linked homolog EIF1AX Evolutionary loss of a Y-linked microRNA target site enabled up-regulation of EIF1AY, but not of EIF1AX, in the heart. Consequently, this essential translation initiation factor is nearly twice as abundant in male as in female heart tissue at the protein level. Divergence between the X and Y Chromosomes in regulatory sequence can therefore lead to tissue-specific Y-Chromosome-driven sex biases in expression of critical, dosage-sensitive regulatory genes.


Asunto(s)
Cromosomas Humanos Y , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Ligados a Y , Transcriptoma , Cromosomas Humanos X/genética , Biología Computacional/métodos , Evolución Molecular , Femenino , Perfilación de la Expresión Génica/métodos , Genes Ligados a X , Humanos , Masculino , MicroARNs/genética , Especificidad de Órganos/genética
6.
Nature ; 546(7658): 426-430, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28607489

RESUMEN

D-type cyclins (D1, D2 and D3) and their associated cyclin-dependent kinases (CDK4 and CDK6) are components of the core cell cycle machinery that drives cell proliferation. Inhibitors of CDK4 and CDK6 are currently being tested in clinical trials for patients with several cancer types, with promising results. Here, using human cancer cells and patient-derived xenografts in mice, we show that the cyclin D3-CDK6 kinase phosphorylates and inhibits the catalytic activity of two key enzymes in the glycolytic pathway, 6-phosphofructokinase and pyruvate kinase M2. This re-directs the glycolytic intermediates into the pentose phosphate (PPP) and serine pathways. Inhibition of cyclin D3-CDK6 in tumour cells reduces flow through the PPP and serine pathways, thereby depleting the antioxidants NADPH and glutathione. This, in turn, increases the levels of reactive oxygen species and causes apoptosis of tumour cells. The pro-survival function of cyclin D-associated kinase operates in tumours expressing high levels of cyclin D3-CDK6 complexes. We propose that measuring the levels of cyclin D3-CDK6 in human cancers might help to identify tumour subsets that undergo cell death and tumour regression upon inhibition of CDK4 and CDK6. Cyclin D3-CDK6, through its ability to link cell cycle and cell metabolism, represents a particularly powerful oncoprotein that affects cancer cells at several levels, and this property can be exploited for anti-cancer therapy.


Asunto(s)
Ciclina D3/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Femenino , Glucólisis/efectos de los fármacos , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Estrés Oxidativo/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Fosfofructoquinasa-1/metabolismo , Fosforilación/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Purinas/farmacología , Purinas/uso terapéutico , Piruvato Quinasa/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Proteomics ; 22(19-20): e2100247, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35866514

RESUMEN

Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.


Asunto(s)
Clorhidrato de Fingolimod , Esclerosis Múltiple , Animales , Ratones , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/metabolismo , Clorhidrato de Fingolimod/uso terapéutico , Proteoma/metabolismo , Endocannabinoides/metabolismo , Encéfalo/metabolismo , Esclerosis Múltiple/metabolismo , Metabolismo Energético , Autofagia , Interleucina-12/metabolismo
8.
Nature ; 534(7608): 500-5, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27309819

RESUMEN

Genetic variation modulates protein expression through both transcriptional and post-transcriptional mechanisms. To characterize the consequences of natural genetic diversity on the proteome, here we combine a multiplexed, mass spectrometry-based method for protein quantification with an emerging outbred mouse model containing extensive genetic variation from eight inbred founder strains. By measuring genome-wide transcript and protein expression in livers from 192 Diversity outbred mice, we identify 2,866 protein quantitative trait loci (pQTL) with twice as many local as distant genetic variants. These data support distinct transcriptional and post-transcriptional models underlying the observed pQTL effects. Using a sensitive approach to mediation analysis, we often identified a second protein or transcript as the causal mediator of distant pQTL. Our analysis reveals an extensive network of direct protein-protein interactions. Finally, we show that local genotype can provide accurate predictions of protein abundance in an independent cohort of collaborative cross mice.


Asunto(s)
Variación Genética/genética , Hígado/metabolismo , Proteoma/análisis , Proteoma/genética , Proteómica , Animales , Femenino , Genoma/genética , Genotipo , Masculino , Espectrometría de Masas , Ratones , Modelos Genéticos , Mapas de Interacción de Proteínas , Proteoma/biosíntesis , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Transcriptoma/genética
9.
Proc Natl Acad Sci U S A ; 115(5): 1015-1020, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339491

RESUMEN

E-type cyclins (cyclins E1 and E2) are components of the core cell cycle machinery and are overexpressed in many human tumor types. E cyclins are thought to drive tumor cell proliferation by activating the cyclin-dependent kinase 2 (CDK2). The cyclin E1 gene represents the site of recurrent integration of the hepatitis B virus in the pathogenesis of hepatocellular carcinoma, and this event is associated with strong up-regulation of cyclin E1 expression. Regardless of the underlying mechanism of tumorigenesis, the majority of liver cancers overexpress E-type cyclins. Here we used conditional cyclin E knockout mice and a liver cancer model to test the requirement for the function of E cyclins in liver tumorigenesis. We show that a ubiquitous, global shutdown of E cyclins did not visibly affect postnatal development or physiology of adult mice. However, an acute ablation of E cyclins halted liver cancer progression. We demonstrated that also human liver cancer cells critically depend on E cyclins for proliferation. In contrast, we found that the function of the cyclin E catalytic partner, CDK2, is dispensable in liver cancer cells. We observed that E cyclins drive proliferation of tumor cells in a CDK2- and kinase-independent mechanism. Our study suggests that compounds which degrade or inhibit cyclin E might represent a highly selective therapeutic strategy for patients with liver cancer, as these compounds would selectively cripple proliferation of tumor cells, while sparing normal tissues.


Asunto(s)
Ciclina E/metabolismo , Neoplasias Hepáticas/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ciclina E/deficiencia , Ciclina E/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Ciclinas/deficiencia , Ciclinas/genética , Ciclinas/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Noqueados , Proteínas Oncogénicas/deficiencia , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo
10.
J Cell Biochem ; 121(12): 4931-4944, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32692886

RESUMEN

Current evidence suggests that exposure to chronically induced intraocular pressure (IOP) leads to neurodegenerative changes in the inner retina. This study aimed to determine retinal proteomic alterations in a rat model of glaucoma and compared findings with human retinal proteomics changes in glaucoma reported previously. We developed an experimental glaucoma rat model by subjecting the rats to increased IOP (9.3 ± 0.1 vs 20.8 ± 1.6 mm Hg) by weekly microbead injections into the eye (8 weeks). The retinal tissues were harvested from control and glaucomatous eyes and protein expression changes analysed using a multiplexed quantitative proteomics approach (TMT-MS3). Immunofluorescence was performed for selected protein markers for data validation. Our study identified 4304 proteins in the rat retinas. Out of these, 139 proteins were downregulated (≤0.83) while the expression of 109 proteins was upregulated (≥1.2-fold change) under glaucoma conditions (P ≤ .05). Computational analysis revealed reduced expression of proteins associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, cytoskeleton, and actin filament organisation, along with increased expression of proteins in coagulation cascade, apoptosis, oxidative stress, and RNA processing. Further functional network analysis highlighted the differential modulation of nuclear receptor signalling, cellular survival, protein synthesis, transport, and cellular assembly pathways. Alterations in crystallin family, glutathione metabolism, and mitochondrial dysfunction associated proteins shared similarities between the animal model of glaucoma and the human disease condition. In contrast, the activation of the classical complement pathway and upregulation of cholesterol transport proteins were exclusive to human glaucoma. These findings provide insights into the neurodegenerative mechanisms that are specifically affected in the retina in response to chronically elevated IOP.

12.
Nucleic Acids Res ; 41(2): e38, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23143268

RESUMEN

Interactions between DNA and transcription factors (TFs) guide cellular function and development, yet the complexities of gene regulation are still far from being understood. Such understanding is limited by a paucity of techniques with which to probe DNA-protein interactions. We have devised magnetic protein immobilization on enhancer DNA (MagPIE), a simple, rapid, multi-parametric assay using flow cytometric immunofluorescence to reveal interactions among TFs, chromatin structure and DNA. In MagPIE, synthesized DNA is bound to magnetic beads, which are then incubated with nuclear lysate, permitting sequence-specific binding by TFs, histones and methylation by native lysate factors that can be optionally inhibited with small molecules. Lysate protein-DNA binding is monitored by flow cytometric immunofluorescence, which allows for accurate comparative measurement of TF-DNA affinity. Combinatorial fluorescent staining allows simultaneous analysis of sequence-specific TF-DNA interaction and chromatin modification. MagPIE provides a simple and robust method to analyze complex epigenetic interactions in vitro.


Asunto(s)
ADN/metabolismo , Citometría de Flujo/métodos , Factores de Transcripción/metabolismo , Animales , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Histonas/metabolismo , Ratones
13.
bioRxiv ; 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38328167

RESUMEN

Ubiquitin is a small, highly conserved protein that acts as a posttranslational modification in eukaryotes. Ubiquitination of proteins frequently serves as a degradation signal, marking them for disposal by the proteasome. Here, we report a novel small molecule from a diversity-oriented synthesis library, BRD1732, that is directly ubiquitinated in cells, resulting in dramatic accumulation of inactive ubiquitin monomers and polyubiquitin chains causing broad inhibition of the ubiquitin-proteasome system. Ubiquitination of BRD1732 and its associated cytotoxicity are stereospecific and dependent upon two homologous E3 ubiquitin ligases, RNF19A and RNF19B. Our finding opens the possibility for indirect ubiquitination of a target through a ubiquitinated bifunctional small molecule, and more broadly raises the potential for posttranslational modification in trans.

14.
Proteomics ; 13(12-13): 1922-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23580440

RESUMEN

Low root temperature causes a decrease in water uptake, which leads to mineral and nutrient deficiencies with potentially decreased root and shoot growth. Differential temperature effects in plants have been studied extensively, however, the effect of root chilling on the global protein expression in shoots has not been explored. In this study, we imposed chilling temperatures on roots of rice plants while maintaining shoots at optimum atmospheric temperature. Shoot materials (growing zones and leaves) were harvested at five points over a time course of four days, including a two-day recovery period. Proteins were quantified by tandem mass tags and triple stage MS, using a method developed to overcome ratio compression in isobaric-labelled quantitation. Over 3000 proteins in each of the tissues were quantified by multiple peptides. Proteins significantly differentially expressed as compared with the control included abscisic acid-responsive and drought-associated proteins. The data also contained evidence of a possible induction of a sugar signalling pathway.


Asunto(s)
Oryza/fisiología , Proteínas de Plantas/análisis , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantones/metabolismo , Frío , Respuesta al Choque por Frío , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Brotes de la Planta/química , Proteómica , Transducción de Señal , Espectrometría de Masas en Tándem
15.
Bioinformatics ; 28(23): 3115-22, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23060611

RESUMEN

MOTIVATION: Proteomics presents the opportunity to provide novel insights about the global biochemical state of a tissue. However, a significant problem with current methods is that shotgun proteomics has limited success at detecting many low abundance proteins, such as transcription factors from complex mixtures of cells and tissues. The ability to assay for these proteins in the context of the entire proteome would be useful in many areas of experimental biology. RESULTS: We used network-based inference in an approach named SNIPE (Software for Network Inference of Proteomics Experiments) that selectively highlights proteins that are more likely to be active but are otherwise undetectable in a shotgun proteomic sample. SNIPE integrates spectral counts from paired case-control samples over a network neighbourhood and assesses the statistical likelihood of enrichment by a permutation test. As an initial application, SNIPE was able to select several proteins required for early murine tooth development. Multiple lines of additional experimental evidence confirm that SNIPE can uncover previously unreported transcription factors in this system. We conclude that SNIPE can enhance the utility of shotgun proteomics data to facilitate the study of poorly detected proteins in complex mixtures. AVAILABILITY AND IMPLEMENTATION: An implementation for the R statistical computing environment named snipeR has been made freely available at http://genetics.bwh.harvard.edu/snipe/. CONTACT: ssunyaev@rics.bwh.harvard.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Proteoma/análisis , Proteómica/métodos , Programas Informáticos , Animales , Biología Computacional/métodos , Ratones , Diente/metabolismo
16.
Mol Cell Proteomics ; 10(9): M900538MCP200, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20167946

RESUMEN

Cancer is well known to be associated with alterations in membrane protein glycosylation (Bird, N. C., Mangnall, D., and Majeed, A. W. (2006) Biology of colorectal liver metastases: A review. J. Surg. Oncol. 94, 68-80; Dimitroff, C. J., Pera, P., Dall'Olio, F., Matta, K. L., Chandrasekaran, E. V., Lau, J. T., and Bernacki, R. J. (1999) Cell surface n-acetylneuraminic acid alpha2,3-galactoside-dependent intercellular adhesion of human colon cancer cells. Biochem. Biophys. Res. Commun. 256, 631-636; and Arcinas, A., Yen, T. Y., Kebebew, E., and Macher, B. A. (2009) Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns. J. Proteome Res. 8, 3958-3968). Equally, it has been well established that tumor-associated inflammation through the release of pro-inflammatory cytokines is a common cause of reduced hepatic drug metabolism and increased toxicity in advanced cancer patients being treated with cytotoxic chemotherapies. However, little is known about the impact of bearing a tumor (and downstream effects like inflammation) on liver membrane protein glycosylation. In this study, proteomic and glycomic analyses were used in combination to determine whether liver membrane protein glycosylation was affected in mice bearing the Engelbreth-Holm Swarm sarcoma. Peptide IPG-IEF and label-free quantitation determined that many enzymes involved in the protein glycosylation pathway specifically; mannosidases (Man1a-I, Man1b-I and Man2a-I), mannoside N-acetylglucosaminyltransferases (Mgat-I and Mgat-II), galactosyltransferases (B3GalT-VII, B4GalT-I, B4GalT-III, C1GalT-I, C1GalT-II, and GalNT-I), and sialyltransferases (ST3Gal-I, ST6Gal-I, and ST6GalNAc-VI) were up-regulated in all livers of tumor-bearing mice (n = 3) compared with nontumor bearing controls (n = 3). In addition, many cell surface lectins: Sialoadhesin-1 (Siglec-1), C-type lectin family 4f (Kupffer cell receptor), and Galactose-binding lectin 9 (Galectin-9) were determined to be up-regulated in the liver of tumor-bearing compared with control mice. Global glycan analysis identified seven N-glycans and two O-glycans that had changed on the liver membrane proteins derived from tumor-bearing mice. Interestingly, α (2,3) sialic acid was found to be up-regulated on the liver membrane of tumor-bearing mice, which reflected the increased expression of its associated sialyltransferase and lectin receptor (siglec-1). The overall increased sialylation on the liver membrane of Engelbreth-Holm Swarm bearing mice correlates with the increased expression of their associated glycosyltransferases and suggests that glycosylation of proteins in the liver plays a role in tumor-induced liver inflammation.


Asunto(s)
Galactosiltransferasas/metabolismo , Glicómica/métodos , Inflamación/metabolismo , Hígado/metabolismo , Manosidasas/metabolismo , Neoplasias/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Sarcoma Experimental/metabolismo , Sialiltransferasas/metabolismo , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Galactosiltransferasas/genética , Regulación Neoplásica de la Expresión Génica , Glicosilación , Inflamación/etiología , Inflamación/genética , Lectinas/genética , Lectinas/metabolismo , Hígado/citología , Masculino , Manosidasas/genética , Ratones , Ratones Transgénicos , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Trasplante de Neoplasias , Neoplasias/complicaciones , Neoplasias/genética , Polisacáridos/genética , Polisacáridos/metabolismo , Proteoma/genética , Receptores Mitogénicos/genética , Receptores Mitogénicos/metabolismo , Sarcoma Experimental/complicaciones , Sarcoma Experimental/genética , Sialiltransferasas/genética
17.
Cell Rep ; 42(4): 112314, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37000627

RESUMEN

Elucidating the mechanisms of resistance to immunotherapy and developing strategies to improve its efficacy are challenging goals. Bioinformatics analysis demonstrates that high CDK6 expression in melanoma is associated with poor progression-free survival of patients receiving single-agent immunotherapy. Depletion of CDK6 or cyclin D3 (but not of CDK4, cyclin D1, or D2) in cells of the tumor microenvironment inhibits tumor growth. CDK6 depletion reshapes the tumor immune microenvironment, and the host anti-tumor effect depends on cyclin D3/CDK6-expressing CD8+ and CD4+ T cells. This occurs by CDK6 phosphorylating and increasing the activities of PTP1B and T cell protein tyrosine phosphatase (TCPTP), which, in turn, decreases tyrosine phosphorylation of CD3ζ, reducing the signal transduction for T cell activation. Administration of a PTP1B and TCPTP inhibitor prove more efficacious than using a CDK6 degrader in enhancing T cell-mediated immunotherapy. Targeting protein tyrosine phosphatases (PTPs) might be an effective strategy for cancer patients who resist immunotherapy treatment.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina , Neoplasias , Humanos , Ciclina D3/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Transducción de Señal , Fosforilación , Inmunoterapia , Quinasa 4 Dependiente de la Ciclina/metabolismo , Microambiente Tumoral
18.
Elife ; 102021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33687326

RESUMEN

Little is known about the molecular changes that take place in the kidney during the aging process. In order to better understand these changes, we measured mRNA and protein levels in genetically diverse mice at different ages. We observed distinctive change in mRNA and protein levels as a function of age. Changes in both mRNA and protein are associated with increased immune infiltration and decreases in mitochondrial function. Proteins show a greater extent of change and reveal changes in a wide array of biological processes including unique, organ-specific features of aging in kidney. Most importantly, we observed functionally important age-related changes in protein that occur in the absence of corresponding changes in mRNA. Our findings suggest that mRNA profiling alone provides an incomplete picture of molecular aging in the kidney and that examination of changes in proteins is essential to understand aging processes that are not transcriptionally regulated.


Asunto(s)
Envejecimiento/genética , Riñón/fisiología , Proteoma/fisiología , Transcriptoma/fisiología , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Proteómica
19.
Nat Cell Biol ; 19(3): 177-188, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28192421

RESUMEN

Progression of mammalian cells through the G1 and S phases of the cell cycle is driven by the D-type and E-type cyclins. According to the current models, at least one of these cyclin families must be present to allow cell proliferation. Here, we show that several cell types can proliferate in the absence of all G1 cyclins. However, following ablation of G1 cyclins, embryonic stem (ES) cells attenuated their pluripotent characteristics, with the majority of cells acquiring the trophectodermal cell fate. We established that G1 cyclins, together with their associated cyclin-dependent kinases (CDKs), phosphorylate and stabilize the core pluripotency factors Nanog, Sox2 and Oct4. Treatment of murine ES cells, patient-derived glioblastoma tumour-initiating cells, or triple-negative breast cancer cells with a CDK inhibitor strongly decreased Sox2 and Oct4 levels. Our findings suggest that CDK inhibition might represent an attractive therapeutic strategy by targeting glioblastoma tumour-initiating cells, which depend on Sox2 to maintain their tumorigenic potential.


Asunto(s)
Diferenciación Celular , Ciclina G1/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Animales , Biomarcadores/metabolismo , Ciclo Celular , Proliferación Celular , Separación Celular , ADN/análisis , Embrión de Mamíferos/citología , Epigénesis Genética , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Histonas/metabolismo , Hormonas/farmacología , Imagenología Tridimensional , Lisina/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/embriología , Metilación , Ratones , Ratones Endogámicos C57BL , ARN/análisis , Receptores Acoplados a Proteínas G/metabolismo , Esteroides/farmacología , Tetraspaninas/metabolismo
20.
Sci Rep ; 7(1): 12685, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28978942

RESUMEN

ABSTARCT: Glaucoma is a chronic disease that shares many similarities with other neurodegenerative disorders of the central nervous system. This study was designed to evaluate the association between glaucoma and other neurodegenerative disorders by investigating glaucoma-associated protein changes in the retina and vitreous humour. The multiplexed Tandem Mass Tag based proteomics (TMT-MS3) was carried out on retinal tissue and vitreous humour fluid collected from glaucoma patients and age-matched controls followed by functional pathway and protein network interaction analysis. About 5000 proteins were quantified from retinal tissue and vitreous fluid of glaucoma and control eyes. Of the differentially regulated proteins, 122 were found linked with pathophysiology of Alzheimer's disease (AD). Pathway analyses of differentially regulated proteins indicate defects in mitochondrial oxidative phosphorylation machinery. The classical complement pathway associated proteins were activated in the glaucoma samples suggesting an innate inflammatory response. The majority of common differentially regulated proteins in both tissues were members of functional protein networks associated brain changes in AD and other chronic degenerative conditions. Identification of previously reported and novel pathways in glaucoma that overlap with other CNS neurodegenerative disorders promises to provide renewed understanding of the aetiology and pathogenesis of age related neurodegenerative diseases.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Proteínas del Ojo/metabolismo , Glaucoma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteoma/metabolismo , Retina/metabolismo , Cuerpo Vítreo/metabolismo , Anciano , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Biomarcadores/metabolismo , Coagulación Sanguínea , Colesterol/metabolismo , Activación de Complemento , Proteínas del Sistema Complemento/metabolismo , Regulación hacia Abajo , Transporte de Electrón , Femenino , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Persona de Mediana Edad , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/patología , Mapas de Interacción de Proteínas , Control de Calidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA