RESUMEN
Ziziphus mauritana Lam leaves were used to treat asthma, diabetes, pain, and inflammation in the Indian traditional system of medicine. The leaves of the Ziziphus mauritiana Lam were consumed as a vegetable in Indonesia and India. The present study aims to predict the pharmacokinetic properties of flavonoids identified & quantified through U(H)PLC and to evaluate the safety of methanol extract of Ziziphus mauritana Lam leaves (MEZ) in rats. A U(H)PLC-ESI-QTOF-MS/MS was performed to identify flavonoids present in MEZ and quantified using U(H)PLC method. The in-silico ADME properties of the flavonoids were analyzed using Schrodinger Maestro software. The acute oral toxicity study was performed by administering a single dose of MEZ (5000 mg/kg) in female rats and observed for 14 days. The sub-chronic studies were carried out by oral administration of MEZ at 500, 750, and 1000 mg/kg daily for 90 days. The changes in hematological parameters, clinical biochemistry, and histopathology were observed after the treatment period. Eight flavonoids rutin, kaempferol, luteolin, myricetin, catechin, and apigenin were identified from were identified in UPLC-QTOF-MS/MS analysis. These results showed the highest amount of luteolin (5.41 µg/ml) and kaempferol (4.02 µg/ml) present in MEZ. No signs of toxicity or mortality were observed in acute toxicity studies. In the sub-chronic studies, data showed that MEZ does not produce any changes in hematological and clinical biochemical parameters compared to control rats. MEZ (1000 mg/kg) significantly (p < 0.05) reduced total cholesterol, triglycerides, in male rats, which was more prominent on day 90. The histopathological analysis also revealed no changes in the vital organs. These results conclude that MEZ was considered safe and well-tolerated in rats.
Asunto(s)
Ziziphus , Animales , Femenino , Flavonoides/toxicidad , Quempferoles/análisis , Luteolina/análisis , Masculino , Metanol , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Hojas de la Planta/química , Ratas , Estándares de Referencia , Espectrometría de Masas en Tándem , Ziziphus/químicaRESUMEN
Breast cancer (BrCa) is the most common malignancy in women and the second most significant cause of death from cancer. BrCa is one of the most challenging malignancies to treat, and it accounts for a large percentage of cancer-related deaths. The number of cases requiring more effective BrCa therapy has increased dramatically. Scientists are looking for more productive agents, such as organic combinations, for BrCa prevention and treatment because most chemotherapeutic agents are linked to cancer metastasis, the resistance of the drugs, and side effects. Natural compounds produced by living organisms promote apoptosis and inhibit metastasis, slowing the spread of cancer. As a result, these compounds may delay the spread of BrCa, enhancing survival rates and reducing the number of deaths caused by BrCa. Several natural compounds inhibit BrCa production while lowering cancer cell proliferation and triggering cell death. Natural compounds, in addition to therapeutic approaches, are efficient and potential agents for treating BrCa. This review highlights the natural compounds demonstrated in various studies to have anticancer properties in BrCa cells. Future research into biological anti-BrCa agents may pave the way for a new era in BrCa treatment, with natural anti-BrCa drugs playing a key role in improving BrCa patient survival rates.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Mama , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , HumanosRESUMEN
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people's lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.
Asunto(s)
Diabetes Mellitus , Hiperglucemia , Diabetes Mellitus/tratamiento farmacológico , Humanos , Insulina/uso terapéutico , Obesidad/tratamiento farmacológicoRESUMEN
Urinary tract infections (UTIs) are becoming more common, requiring extensive protection from antimicrobials. The global expansion of multi-drug resistance uropathogens in the past decade emphasizes the necessity of newer antibiotic treatments and prevention strategies for UTIs. Medicinal plants have wide therapeutic applications in both the prevention and management of many ailments. Bacopa monnieri is a medicinal plant that is found in the warmer and wetlands regions of the world. It has been used in Ayurvedic systems for centuries. The present study aimed to investigate the antibacterial potential of the extract of B. monnieri leaves and its bioactive molecules against UTIs that are caused by Klebsiella pneumoniae and Proteus mirabilis. This in vitro experimental study was conducted by an agar well diffusion method to evaluate the antimicrobial effect of 80% methanol, 96% ethanol, and aqueous extracts of B. monnieri leaves on uropathogens. Then, further screening of their phytochemicals was carried out using standard methods. To validate the bioactive molecules and the microbe interactions, AutoDock Vina software was used for molecular docking with the Klebsiella pneumoniae fosfomycin resistance protein (5WEW) and the Zn-dependent receptor-binding domain of Proteus mirabilis MR/P fimbrial adhesin MrpH (6Y4F). Toxicity prediction and drug likeness were predicted using ProTox-II and Molinspiration, respectively. A molecular dynamics (MD) simulation was carried out to study the protein ligand complexes. The methanolic leaves extract of B. monnieri revealed a 22.3 mm ± 0.6 mm to 25.0 mm ± 0.5 mm inhibition zone, while ethanolic extract seemed to produce 19.3 mm ± 0.8 mm to 23.0 mm ± 0.4 mm inhibition zones against K. pneumoniae with the use of increasing concentrations. In the case of P. mirabilis activity, the methanolic extracts showed a 21.0 mm ± 0.8 mm to 24.0 mm ± 0.6 mm zone of inhibition and the ethanol extract produced a 17.0 mm ± 0.9 mm to 23.0 mm ± 0.7 mm inhibition zone with increasing concentrations. Carbohydrates, flavonoids, saponin, phenolic, and terpenoid were common phytoconstituents identified in B. monnieri extracts. Oroxindin showed the best interactions with the binding energies with 5WEW and 6Y4F, -7.5 kcal/mol and -7.4 kcal/mol, respectively. Oroxindin, a bioactive molecule, followed Lipinski's rule of five and exhibited stability in the MD simulation. The overall results suggest that Oroxindin from B. monnieri can be a potent inhibitor for the effective killing of K. pneumoniae and P. mirabilis. Additionally, its safety has been established, indicating its potential for future drug discovery and development in the treatment for UTIs.
Asunto(s)
Bacopa , Infecciones Urinarias , Antibacterianos/farmacología , Bacopa/química , Etanol , Klebsiella pneumoniae , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteus mirabilis , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiologíaRESUMEN
Viniferin is a resveratrol derivative. Resveratrol is the most prominent stilbenoid synthesized by plants as a defense mechanism in response to microbial attack, toxins, infections or UV radiation. Different forms of viniferin exist, including alpha-viniferin (α-viniferin), beta-viniferin (ß-viniferin), delta-viniferin (δ-viniferin), epsilon-viniferin (ε-viniferin), gamma-viniferin (γ-viniferin), R-viniferin (vitisin A), and R2-viniferin (vitisin B). All of these forms exhibit a range of important biological activities and, therefore, have several possible applications in clinical research and future drug development. In this review, we present a comprehensive literature search on the chemistry and biosynthesis of and the diverse studies conducted on viniferin, especially with regards to its anti-inflammatory, antipsoriasis, antidiabetic, antiplasmodic, anticancer, anti-angiogenic, antioxidant, anti-melanogenic, neurodegenerative effects, antiviral, antimicrobial, antifungal, antidiarrhea, anti-obesity and anthelminthic activities. In addition to highlighting its important chemical and biological activities, coherent and environmentally acceptable methods for establishing vinferin on a large scale are highlighted to allow the development of further research that can help to exploit its properties and develop new phyto-pharmaceuticals. Overall, viniferin and its derivatives have the potential to be the most effective nutritional supplement and supplementary medication, especially as a therapeutic approach. More researchers will be aware of viniferin as a pharmaceutical drug as a consequence of this review, and they will be encouraged to investigate viniferin and its derivatives as pharmaceutical drugs to prevent future health catastrophes caused by a variety of serious illnesses.
Asunto(s)
Estilbenos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antivirales , Descubrimiento de Drogas , Preparaciones Farmacéuticas , Resveratrol/farmacología , Estilbenos/química , Estilbenos/farmacología , Estilbenos/uso terapéuticoRESUMEN
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders that have emerged as among the serious health problems of the 21st century. The medications currently available to treat AD and PD have limited efficacy and are associated with side effects. Natural products are one of the most vital and conservative sources of medicines for treating neurological problems. Karanjin is a furanoflavonoid, isolated mainly from Pongamia pinnata with several medicinal plants, and has been reported for numerous health benefits. However, the effect of karanjin on AD and PD has not yet been systematically investigated. To evaluate the neuroprotective effect of karanjin, extensive in silico studies starting with molecular docking against five putative targets for AD and four targets for PD were conducted. The findings were compared with three standard drugs using Auto Dock 4.1 and Molegro Virtual Docker software. Additionally, the physiochemical properties (Lipinski rule of five), drug-likeness and parameters including absorption, distribution, metabolism, elimination and toxicity (ADMET) profiles of karanjin were also studied. The molecular dynamics (MD) simulations were performed with two selective karanjin docking complexes to analyze the dynamic behaviors and binding free energy at 100 ns time scale. In addition, frontier molecular orbitals (FMOs) and density-functional theory (DFT) were also investigated from computational quantum mechanism perspectives using the Avogadro-ORCA 1.2.0 platform. Karanjin complies with all five of Lipinski's drug-likeness rules with suitable ADMET profiles for therapeutic use. The docking scores (kcal/mol) showed comparatively higher potency against AD and PD associated targets than currently used standard drugs. Overall, the potential binding affinity from molecular docking, static thermodynamics feature from MD-simulation and other multiparametric drug-ability profiles suggest that karanjin could be considered as a suitable therapeutic lead for AD and PD treatment. Furthermore, the present results were strongly correlated with the earlier study on karanjin in an Alzheimer's animal model. However, necessary in vivo studies, clinical trials, bioavailability, permeability and safe dose administration, etc. must be required to use karanjin as a potential drug against AD and PD treatment, where the in silico results are more helpful to accelerate the drug development.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Benzopiranos , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Enfermedad de Parkinson/tratamiento farmacológicoRESUMEN
Cardiovascular disorders (CVDs) are the leading risk factor for death worldwide, and research into the processes and treatment regimens has received a lot of attention. Tilianin is a flavonoid glycoside that can be found in a wide range of medicinal plants and is most commonly obtained from Dracocephalum moldavica. Due to its extensive range of biological actions, it has become a well-known molecule in recent years. In particular, numerous studies have shown that tilianin has cardioprotective properties against CVDs. Hence, this review summarises tilianin's preclinical research in CVDs, as well as its mechanism of action and opportunities in future drug development. The physicochemical and drug-likeness properties, as well as the toxicity profile, were also highlighted. Tilianin can be a natural lead molecule in the therapy of CVDs such as coronary heart disease, angina pectoris, hypertension, and myocardial ischemia, according to scientific evidence. Free radical scavenging, inflammation control, mitochondrial function regulation, and related signalling pathways are all thought to play a role in tilianin's cardioprotective actions. Finally, we discuss tilianin-derived compounds, as well as the limitations and opportunities of using tilianin as a lead molecule in drug development for CVDs. Overall, the scientific evidence presented in this review supports that tilianin and its derivatives could be used as a lead molecule in CVD drug development initiatives.
Asunto(s)
Productos Biológicos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Diseño de Fármacos , Desarrollo de Medicamentos , Flavonoides/farmacología , Glicósidos/farmacología , Animales , HumanosRESUMEN
Kirenol, a potential natural diterpenoid molecule, is mainly found in Sigesbeckia species. Kirenol has received a lot of interest in recent years due to its wide range of pharmacological actions. In particular, it has a significant ability to interact with a wide range of molecular targets associated with inflammation. In this review, we summarise the efficacy and safety of kirenol in reducing inflammation, as well as its potential mechanisms of action and opportunities in future drug development. Based on the preclinical studies reported earlier, kirenol has a good therapeutic potential against inflammation involved in multiple sclerosis, inflammatory bowel disorders, diabetic wounds, arthritis, cardiovascular disease, bone damage, and joint disorders. We also address the physicochemical and drug-like features of kirenol, as well as the structurally modified kirenol-derived molecules. The inhibition of pro-inflammatory cytokines, reduction in the nuclear factor kappa-B (NF-κB), attenuation of antioxidant enzymes, stimulation of heme-oxygenase-1 (HO-1) expression, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation are among the molecular mechanisms contributing to kirenol's anti-inflammatory actions. Furthermore, this review also highlights the challenges and opportunities to improve the drug delivery of kirenol for treating inflammation. According to the findings of this review, kirenol is an active molecule against inflammation in numerous preclinical models, indicating a path to using it for new drug discovery and development in the treatment of a wide range of inflammations.
Asunto(s)
Antiinflamatorios/farmacología , Productos Biológicos/farmacología , Diterpenos/farmacología , Diseño de Fármacos , Desarrollo de Medicamentos , Inflamación/tratamiento farmacológico , Animales , Citocinas/metabolismo , HumanosRESUMEN
Bisphenol A (BPA), a well-known xenoestrogen, is commonly utilised in the production of polycarbonate plastics. Based on the existing evidence, BPA is known to induce neurotoxicity and behavioural issues. Flavonoids such as silibinin and naringenin have been shown to have biological activity against a variety of illnesses. The current research evaluates the neuropharmacological effects of silibinin and naringenin in a zebrafish model against neurotoxicity and oxidative stress caused by Bisphenol A. In this study, a novel tank diving test (NTDT) and light−dark preference test (LDPT) were used in neurobehavioural investigations. The experimental protocol was planned to last 21 days. The neuroprotective effects of silibinin (10 µM) and naringenin (10 µM) in zebrafish (Danio rerio) induced by BPA (17.52 µM) were investigated. In the brine shrimp lethality assay, the 50% fatal concentrations (LC50) were 34.10 µg/mL (silibinin) and 91.33 µg/mL (naringenin) compared to the standard potassium dichromate (13.15 µg/mL). The acute toxicity investigation found no mortality or visible abnormalities in the silibinin- and naringenin-treated groups (LC50 > 100 mg/L). The altered scototaxis behaviour in LDPT caused by BPA was reversed by co-supplementation with silibinin and naringenin, as shown by decreases in the number of transitions to the light zone and the duration spent in the light zone. Our findings point to BPA's neurotoxic potential in causing altered scototaxis and bottom-dwelling behaviour in zebrafish, as well as the usage of silibinin and naringenin as potential neuroprotectants.
Asunto(s)
Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Animales , Compuestos de Bencidrilo/toxicidad , Diseño de Fármacos , Flavanonas , Flavonoides , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Fenoles , Silibina/farmacología , Pez CebraRESUMEN
Sarsasapogenin is a natural steroidal sapogenin molecule obtained mainly from Anemarrhena asphodeloides Bunge. Among the various phytosteroids present, sarsasapogenin has emerged as a promising molecule due to the fact of its diverse pharmacological activities. In this review, the chemistry, biosynthesis and pharmacological potentials of sarsasapogenin are summarised. Between 1996 and the present, the relevant literature regarding sarsasapogenin was obtained from scientific databases including PubMed, ScienceDirect, Scopus, and Google Scholar. Overall, sarsasapogenin is a potent molecule with anti-inflammatory, anticancer, antidiabetic, anti-osteoclastogenic and neuroprotective activities. It is also a potential molecule in the treatment for precocious puberty. This review also discusses the metabolism, pharmacokinetics and possible structural modifications as well as obstacles and opportunities for sarsasapogenin to become a drug molecule in the near future. More comprehensive preclinical studies, clinical trials, drug delivery, formulations of effective doses in pharmacokinetics studies, evaluation of adverse effects and potential synergistic effects with other drugs need to be thoroughly investigated to make sarsasapogenin a potential molecule for future drug development.
Asunto(s)
Anemarrhena , Espirostanos , Anemarrhena/química , Diseño de Fármacos , Espirostanos/química , Espirostanos/farmacologíaRESUMEN
Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.
Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Anciano , Vitamina D , Diabetes Mellitus Tipo 2/metabolismo , Receptores de Calcitriol/genética , Resistencia a la Insulina/genética , Vitaminas , Músculo Esquelético/metabolismo , GlucosaRESUMEN
Ferroptosis is a newly discovered non-apoptotic and iron-dependent type of cell death. Ferroptosis mainly takes place owing to the imbalance of anti-oxidation and oxidation in the body. It is regulated via a number of factors and pathways both inside and outside the cell. Ferroptosis is closely linked with brain and various neurological disorders (NDs). In the human body, the brain contains the highest levels of polyunsaturated fatty acids, which are known as lipid peroxide precursors. In addition, there is also a connection of glutathione depletion and lipid peroxidation with NDs. There is growing evidence regarding the possible link between neuroinflammation and multiple NDs, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and stroke. Recent studies have demonstrated that disruptions of lipid reactive oxygen species (ROS), glutamate excitatory toxicity, iron homeostasis, and various other manifestations linked with ferroptosis can be identified in various neuroinflammation-mediated NDs. It has also been reported that damage-associated molecular pattern molecules including ROS are generated during the events of ferroptosis and can cause glial activation via activating neuroimmune pathways, which subsequently leads to the generation of various inflammatory factors that play a role in various NDs. This review summarizes the regulation pathways of ferroptosis, the link between ferroptosis as well as inflammation in NDs, and the potential of a range of therapeutic agents that can be used to target ferroptosis and inflammation in the treatment of neurological disorders.
RESUMEN
This paper outlines a methodical approach for isolating 6-gingerol (1a) from Zingiber officinale Roscoe rhizomes on a gram-scale, resulting in a product of high purity and significant yield. Further, 6-gingerol (1a) [SSG1] derivatives, including 1-(4-hydroxy-3-methoxyphenyl)decane-3,5-dione (1ab), were synthesized via a semi-synthetic pathway involving DMP-mediated fast oxidation and replication. Subsequently, a new series of 1,4-benzodiazepines (3a-c) was synthesized quantitatively using a basic technique. This synthesis necessitated the interaction of 1ab with various o-phenylenediamine (2a-c) compounds. Spectroscopic methods were employed to characterize the synthesized 1,4-benzodiazepines (3a-c)[SSG2, SSG3 & SSG4]. Despite extensive investments by pharmaceutical companies in traditional drug research and development for diseases like type 2 diabetes (T2D), successful treatments remain elusive. Medication repurposing has gained traction as a strategy to address not only diabetes but also other disorders. Leveraging existing molecular pharmacology data accelerates the development of new medications. This paper underscores the importance of repurposing traditional medicines to combat a range of communicable and non-communicable diseases, offering a promising avenue for therapeutic advancement. Additionally, molecular docking studies suggested that one derivative (SSG2) exhibited stronger binding affinity compared to the reference standards. Overall, the findings of this study highlight the potential of semi-synthetic gingerol derivatives for the development of novel therapeutic agents.
RESUMEN
Acinetobacter baumannii is an ESKAPE pathogen and threatens human health by generating infections with high fatality rates. A. baumannii leads to a spectrum of infections such as skin and wound infections, endocarditis, meningitis pneumonia, septicaemia and urinary tract infections. Recently, strains of A. baumannii have emerged as multidrug-resistant (MDR), meaning they are resistant to at least three different classes of antibiotics. MDR development is primarily intensified by widespread antibiotic misuse and inadequate stewardship. The World Health Organization (WHO) declared A. baumannii a precarious MDR species. A. baumannii maintains the MDR phenotype via a diverse array of antimicrobial metabolite-hydrolysing enzymes, efflux of antibiotics, impermeability and antibiotic target modification, thereby complicating treatment. Hence, a deeper understanding of the resistance mechanisms employed by MDR A. baumannii can give possible approaches to treat antimicrobial resistance. Resistance-nodulation-cell division (RND) efflux pumps have been identified as the key contributors to MDR determinants, owing to their capacity to force a broad spectrum of chemical substances out of the bacterial cell. Though synthetic inhibitors have been reported previously, their efficacy and safety are of debate. As resistance-modifying agents, phytochemicals are ideal choices. These natural compounds could eliminate the bacteria or interact with pathogenicity events and reduce the bacteria's ability to evolve resistance. This review aims to highlight the mechanism behind the multidrug resistance in A. baumannii and elucidate the utility of natural compounds as efflux pump inhibitors to deal with the infections caused by A. baumannii.
Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Humanos , Antibacterianos/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Proteínas de Transporte de Membrana/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Productos Biológicos/farmacologíaRESUMEN
Tamanu oil has traditionally been used to treat various skin problems. The oil has wound-healing and skin-regenerating capabilities and encourages the growth of new skin cells, all of which are helpful for fading scars and hyperpigmentation, as well as promoting an all-around glow. The strong nutty odor and high viscosity are the major disadvantages associated with its application. The aim of this study was to create bigels using tamanu oil for its anti-scarring properties and predict the possible mechanism of action through the help of molecular docking studies. In silico studies were performed to analyze the binding affinity of the protein with the drug, and the anti-scarring activity was established using a full-thickness excision wound model. In silico studies revealed that the components inophyllum C, 4-norlanosta-17(20),24-diene-11,16-diol-21-oic acid, 3-oxo-16,21-lactone, calanolide A, and calophyllolide had docking scores of -11.3 kcal/mol, -11.1 kcal/mol, -9.8 kcal/mol, and -8.6 kcal/mol, respectively, with the cytokine TGF-ß1 receptor. Bigels were prepared with tamanu oil ranging from 5 to 20% along with micronized xanthan gum and evaluated for their pH, viscosity, and spreadability. An acute dermal irritation study in rabbits showed no irritation, erythema, eschar, or edema. In vivo excisional wound-healing studies performed on Wistar rats and subsequent histopathological studies showed that bigels had better healing properties when compared to the commercial formulation (MurivennaTM oil). This study substantiates the wound-healing and scar reduction potential of tamanu oil bigels.
RESUMEN
Human epidermal growth factor receptor-2 (HER2)-positive breast cancer metastasis remains the primary cause of mortality among women globally. Targeted therapies have revolutionized treatment efficacy, with Trastuzumab (Trast), a monoclonal antibody, targeting HER2-positive advanced breast cancer. The tumor-homing peptide iRGD enhances the intratumoral accumulation and penetration of therapeutic agents. Liposomes serve as versatile nanocarriers for both hydrophilic and hydrophobic drugs. Gefitinib (GFB) is a potential anticancer drug against HER2-positive breast cancer, while Lycorine hydrochloride (LCH) is a natural compound with anticancer and anti-inflammatory properties. This study developed TPGS-COOH-coated liposomes co-loaded with GFB and LCH, prepared by the solvent injection method, and surface-functionalized with Trast and iRGD. The dual surface-decorated liposomes (DSDLs) were characterized for their particle size (PS), polydispersity index (PDI), zeta potential (ZP), surface chemistry, surface morphology, and their crystallinity during in-vitro drug release, drug encapsulation, and in-vitro cell line studies on SK-BR-3 and MDA-MB-231 breast cancer cells. The half-maximum inhibitory concentration (IC-50) values of single decorated liposomes (SDLs), iRGD-LP, and Trast-LP, as well as DSDLs (iRGD-Trast-LP) on SK-BR-3 cells, were 6.10 ± 0.42, 4.98 ± 0.36, and 4.34 ± 0.32 µg/mL, respectively. Moreover, the IC-50 values of SDLs and DSDLs on MDA-MB-231 cells were 15.12 ± 0.68, 13.09 ± 0.59, and 11.08 ± 0.48 µg/mL, respectively. Cellular uptake studies using confocal laser scanning microscopy (CLSM) showed that iRGD and Trast functionalization significantly enhanced cellular uptake in both cell lines. The wound-healing assay demonstrated a significant reduction in SDL and DSDL-treated MDA-MB-231 cell migration compared to the control. Additionally, the blood compatibility study showed minimal hemolysis (less than 5% RBC lysis), indicating good biocompatibility and biosafety. Overall, these findings suggest that TPGS-COOH-coated, GFB and LCH co-loaded, dual-ligand (iRGD and Trast) functionalized, multifunctional liposomes could be a promising therapeutic strategy for treating HER2-positive metastatic breast cancer.
RESUMEN
Alzheimer is a severe memory and cognitive impairment neurodegenerative disease that is the most common cause of dementia worldwide and characterized by the pathological accumulation of tau protein and amyloid-beta peptides. In this study, we have developed E-pharmacophore modeling to screen the eMolecules database with the help of a reported co-crystal structure bound with Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE-1). Flumemetamol, florbetaben, and florbetapir are currently approved drugs for use in the clinical diagnosis of Alzheimer's disease. Despite the benefits of commercially approved drugs, there is still a need for novel diagnostic agents with enhanced physicochemical and pharmacokinetic properties compared to those currently used in clinical practice and research. In the E-pharmacophore modeling results, it is revealed that two aromatic rings (R19, R20), one donor (D12), and one acceptor (A8) are obtained, and also that similar pharmacophoric features of compounds are identified from pharmacophore-based virtual screening. The identified screened hits were filtered for further analyses using structure-based virtual screening and MM/GBSA. From the analyses, top hits such as ZINC39592220 and en1003sfl.46293 are selected based on their top docking scores (-8.182 and -7.184 Kcal/mol, respectively) and binding free energy (-58.803 and -56.951 Kcal/mol, respectively). Furthermore, a molecular dynamics simulation and MMPBSA study were performed, which revealed admirable stability and good binding free energy throughout the simulation period. Moreover, Qikprop results revealed that the selected, screened hits have good drug-likeness and pharmacokinetic properties. The screened hits ZINC39592220 and en1003sfl.46293 could be used to develop drug molecules against Alzheimer's disease.
RESUMEN
Objective This cross-sectional, observational study aimed at finding the prevalence of anxiety and depression in cancer patients and the correlation of anxiety and depression with various factors, such as age, sex, marital status, educational status, occupation, financial support, duration, type of care, sort of carcinoma, and stages of malignancy, among cancer patients attending the G. Kuppuswamy Naidu Memorial Hospital, Coimbatore, Tamil Nadu, India from July 2022 to December 2022, using the Hospital Anxiety and Depression Scale (HADS). Methods A total of 162 cancer patients referred for various cancer therapies (chemo/surgery/combination therapies) were included. All patients were administered the HADS. The association between anxiety scores and various factors such as age, site, and sex was found using the chi-square test. Results Thirty-nine (24.1%) patients had severe anxiety, 60 (37%) patients had borderline anxiety, and 63 (38.9%) patients were found to be normal. Fifty-three (32.7%) patients had severe depression, 47 (29%) patients had borderline depression, and 62 (38.3%) patients were found to be normal. The findings of this study indicate that educational status and occupational status are the significant factors (p < 0.05) responsible for increasing the risk of prevalence of anxiety and depression in cancer patients. Another interesting observation in this study was that patients with breast and gastrointestinal cancer had the highest prevalence of depression among other cancer types. Conclusions The present study contributed to the prevalence of anxiety and depression in cancer patients in Tamil Nadu, India. While the study population is small, which is a limitation of the present study, it has provided an overview that educational status and occupation contribute significantly to anxiety and depression, which has not been explored much in the past. To efficiently manage this, patients should be made aware of the financial support available from various philanthropic groups, government policies, and insurance so that they can improve their quality of life and manage their clinical condition in a more confident manner. These findings call for the need for early psychiatric interventions in cancer care to improve the quality of life of patients by focusing on improving patients' mental stability and adherence to the medications for providing positive outcomes from the cancer treatments.
RESUMEN
The present work aimed to formulate and evaluate a polyherbal gel using Aloe barbadensis and extract of Vigna radiata for the treatment of acne, a disorder of the skin in which hair follicles and sebaceous glands are blocked, causing inflammation and redness of the skin. Aloe barbadensis pulp was collected and mixed with the extract of Vigna radiata and formulated into a gel using Carbopol 940, triethanolamine, and propylene glycol as the gelling agent, viscosity modifier, and pH modifier, respectively. The gel was evaluated for its antimicrobial properties against Staphylococcus aureus, Escherichia coli, and Candida albicans. Antimicrobial agents, such as gentamycin and fluconazole, were used as the standards. The developed formulation showed promising zone of inhibition. The gel was further evaluated for its physicochemical properties. The formulation showed a promising effect on acne together with the additive effect of Aloe barbadensis on skin.
RESUMEN
Electrospun nanofibers scaffolds show promising potential in wound healing applications. This work aims to fabricate nanofibrous wound dressing as a novel approach for a topical drug delivery system. Herein, the electrospinning technique is used to design and fabricate bioabsorbable nanofibrous scaffolds of Polyvinyl alcohol/gelatin/poly (lactic-co-glycolic acid) enriched with thrombin (TMB) as hemostatic agent and vancomycin (VCM) as anti-bacterial agent for a multifunctional platform to control excessive blood loss, inhibit bacterial growth and enhance wound healing. SEM, FTIR, XRD, in vitro drug release, antimicrobial studies, biofilm, cell viability assay, and in vivo study in a rat model were used to assess nanofiber's structural, mechanical, and biological aspects. SEM images confirms the diameter of nanofibers which falls within the range from 150 to 300 nm for all the batches. Excellent swelling index data makes it suitable to absorb wound exudates. In-vitro drug release data shows sustained release behavior of nanofiber. Nanofibers scaffolds showed biomimetic behavior and excellent biocompatibility. Moreover, scaffolds exhibited excellent antimicrobial and biofilm activity against Staphylococcus aureus. Nanofibrous scaffolds showed less bleeding time, rapid blood coagulation, and excellent wound closure in a rat model. ELISA study demonstrated the decreasing level of inflammatory markers, such as TNF-α, IL1ß, and IL-6, making formulation promising for hemostatic wound healing applications. Finally, the study concludes that nanofibrous scaffolds loaded with TMB and VCM have promising potential as a dressing material for hemostatic wound healing applications.