Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Neurosci ; 41(12): 1553-68, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25828470

RESUMEN

Although ASIC4 is a member of the acid-sensing ion channel (ASIC) family, we have limited knowledge of its expression and physiological function in vivo. To trace the expression of this ion channel, we generated the ASIC4-knockout/CreERT(2)-knockin (Asic4(Cre) (ERT) (2)) mouse line. After tamoxifen induction in the Asic4(Cre) (ERT)(2)::CAG-STOP(floxed)-Td-tomato double transgenic mice, we mapped the expression of ASIC4 at the cellular level in the central nervous system (CNS). ASIC4 was expressed in many brain regions, including the olfactory bulb, cerebral cortex, striatum, hippocampus, amygdala, thalamus, hypothalamus, brain stem, cerebellum, spinal cord and pituitary gland. Colocalisation studies further revealed that ASIC4 was expressed mainly in three types of cells in the CNS: (i) calretinin (CR)-positive and/or vasoactive intestine peptide (VIP)-positive interneurons; (ii) neural/glial antigen 2 (NG2)-positive glia, also known as oligodendrocyte precursor cells; and (iii) cerebellar granule cells. To probe the possible role of ASIC4, we hypothesised that ASIC4 could modulate the membrane expression of ASIC1a and thus ASIC1a signaling in vivo. We conducted behavioral phenotyping of Asic4(Cre) (ERT)(2) mice by screening many of the known behavioral phenotypes found in Asic1a knockouts and found ASIC4 not involved in shock-evoked fear learning and memory, seizure termination or psychostimulant-induced locomotion/rewarding effects. In contrast, ASIC4 might play an important role in modulating the innate fear response to predator odor and anxious state because ASIC4-mutant mice showed increased freezing response to 2,4,5-trimethylthiazoline and elevated anxiety-like behavior in both the open-field and elevated-plus maze. ASIC4 may modulate fear and anxiety by counteracting ASIC1a activity in the brain.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Ansiedad/metabolismo , Miedo/fisiología , Canales Iónicos Sensibles al Ácido/genética , Anfetamina/toxicidad , Animales , Ansiedad/genética , Composición Corporal/efectos de los fármacos , Composición Corporal/genética , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Antagonistas de Estrógenos/farmacología , Agonistas de Aminoácidos Excitadores/toxicidad , Miedo/efectos de los fármacos , Humanos , Hipercinesia/inducido químicamente , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/metabolismo , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Convulsiones/inducido químicamente , Tamoxifeno/farmacología , Factores de Tiempo
2.
Elife ; 102021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34569932

RESUMEN

Accumulating evidence has shown transcranial low-intensity ultrasound can be potentially a non-invasive neural modulation tool to treat brain diseases. However, the underlying mechanism remains elusive and the majority of studies on animal models applying rather high-intensity ultrasound that cannot be safely used in humans. Here, we showed low-intensity ultrasound was able to activate neurons in the mouse brain and repeated ultrasound stimulation resulted in adult neurogenesis in specific brain regions. In vitro calcium imaging studies showed that a specific ultrasound stimulation mode, which combined with both ultrasound-induced pressure and acoustic streaming mechanotransduction, is required to activate cultured cortical neurons. ASIC1a and cytoskeletal proteins were involved in the low-intensity ultrasound-mediated mechanotransduction and cultured neuron activation, which was inhibited by ASIC1a blockade and cytoskeleton-modified agents. In contrast, the inhibition of mechanical-sensitive channels involved in bilayer-model mechanotransduction like Piezo or TRP proteins did not repress the ultrasound-mediated neuronal activation as efficiently. The ASIC1a-mediated ultrasound effects in mouse brain such as immediate response of ERK phosphorylation and DCX marked neurogenesis were statistically significantly compromised by ASIC1a gene deletion. Collated data suggest that ASIC1a is the molecular determinant involved in the mechano-signaling of low-intensity ultrasound that modulates neural activation in mouse brain.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Encéfalo/metabolismo , Mecanotransducción Celular , Neurogénesis , Neuronas/metabolismo , Ondas Ultrasónicas , Canales Iónicos Sensibles al Ácido/genética , Animales , Encéfalo/citología , Células CHO , Señalización del Calcio , Cricetulus , Citoesqueleto/metabolismo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Fosforilación , Presión , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA