RESUMEN
Arthropods, especially ixodid ticks, have been incriminated in the epidemiology of Spotted Fever Group rickettsioses globally leading to an increasing spectrum of emerging and re-emerging zoonoses with attendant consequences on trade and tourism. The objective of this study was to determine the role of ixodid ticks infesting small ruminants in Plateau State, Nigeria, in the epidemiology of Spotted Fever Group Rickettsiae (SFGR) in the study area. DNA from 130 out of 323 ixodid ticks collected from 179 goats and 121 sheep owned by agro-pastoralists in Plateau State were screened for the evidence of SFGR by molecular methods. Six tick species from four genera were identified: Amblyomma, Hyalomma, Rhipicephalus (Boophilus) and Rhipicephalus. Rhipicephalus sanguineus sensu lato (s.l.) was the predominant (54.5%) species among collected ticks. Tick infestation was significantly associated with the species of small ruminants, the sex of the animals and the sampling locations except for Jos South. Conventional PCR targeting the 381 bp of the citrate synthase (gltA) and 820 bp of the outer membrane protein B (ompB) genes detected DNA of SFGR in nine and eight samples, respectively. Sequence analysis revealed that five sequences obtained from Amblyomma variegatum were 99-100% identical to Rickettsia africae and three sequences from Rh. sanguineus (s.l.) were 100% identical to Rickettsia massiliae reported from Spain. To our knowledge, this is the first report of the detection of R. africae DNA in Am. variegatum collected from small ruminants in Plateau State. Ixodid ticks infesting small ruminants in Plateau state harbor DNA of SFGR with potential veterinary and public health implications.
Asunto(s)
Ixodidae , Rhipicephalus , Rickettsia , Animales , Ovinos , Nigeria , Rickettsia/genética , Ixodidae/microbiología , Rhipicephalus/microbiología , CabrasRESUMEN
The COVID-19 pandemic has caused the death of 7.1 million people worldwide as of 7 July 2024. In Nigeria, the first confirmed case was reported on 27 February 2020, subsequently followed by a nationwide spread of SARS-CoV-2 with morbidity and mortality reaching 267 173 and 3155, respectively, as of 7 July 2024. At the beginning of the pandemic, only a few public health laboratories in Nigeria had the capacity for SARS-CoV-2 molecular diagnosis. The National Veterinary Research Institute (NVRI), already experienced in influenza diagnosis, responded to the public health challenge for the diagnosis of COVID-19 samples from humans. The feat was possible through the collective utilisation of NVRI human and material resources, including biosafety facilities, equipment, reagents and consumables donated by international partners and collaborators. Within 6 months of the reported COVID-19 outbreak in Nigeria, over 33 000 samples were processed in NVRI facilities covering five states. Thereafter, many field and laboratory projects were jointly implemented between NVRI and collaborating sectors including the Nigerian Centre for Disease Control (NCDC) and the National Institute for Medical Research (NIMR), which brought together professionals in the health, veterinary, education and socio-sciences. In addition, One Health grants were secured to enhance surveillance for coronavirus and other zoonoses and build capacity in genomics. Bio-surveillance for coronaviruses and other emerging zoonotic pathogens at the human-animal interface was activated and continued with sample collection and analysis in the laboratory for coronaviruses, Lassa fever virus and Mpox. One Health approach has shown that inter-sectoral and multinational collaboration for diagnosis, research and development in animals, and the environment to better understand pathogen spillover events at the human-animal interface is an important global health priority and pandemic preparedness.
Asunto(s)
COVID-19 , Salud Única , Animales , Humanos , COVID-19/epidemiología , COVID-19/veterinaria , COVID-19/prevención & control , Nigeria/epidemiología , Pandemias , Salud PúblicaRESUMEN
Background: Outbreaks of contagious ecthyma (CE) are frequently reported in sheep and goat flocks in Nigeria with severe clinical outcomes. CE is a debilitating and economically important disease primarily affecting sheep and goats caused by the Orf virus (ORFV). Despite field reports of CE in the country, there is no concise country-wide epidemiological data on the disease and limited genetic data of circulating Nigerian ORFV are available in the public domain. Aim: An epidemiological survey of CE and molecular characterization of ORFV circulating in Nigeria from 2014 to 2016. Method: Data were collected using designed questionnaires, administered to veterinarians and farmers in selected States of Nigeria. Samples were collected during passive surveillance for CE from 2014 to 2016 which were analyzed by polymerase chain reaction (PCR). The A32L and B2L genes of circulating ORFV were also characterized. Results: Analysis of the questionnaire showed that 69.54% (n = 82/118) of the farmers claimed to have experienced CE in their flocks with average morbidity and mortality rates of 25% and 15%, respectively. A total of 113 veterinarians participated in the study, with 69.9% (n = 79) familiar with CE and claimed CE causes morbidity rates of 25%-37% and mortality rates of 10%-15% in sheep and goats. Laboratory results revealed that ORFV was detected in 72% (18/25) of outbreak samples analyzed by real-time PCR. Phylogenetic analysis of A32L and B2L genes revealed that Nigerian ORFV sequences belong to clusters I and II and are similar to viruses from India, Ethiopia, and China. Conclusions: This study is the first nationwide epidemiological data on the status of CE in sheep and goats in Nigeria. It is also the first report of molecular characterization of two genes of ORFV circulating and causing outbreaks in small ruminants in the country. This study showed that CE is under-reported, widespread and of economic importance to sheep and goat farmers in Nigeria.
Asunto(s)
Ectima Contagioso , Enfermedades de las Cabras , Virus del Orf , Enfermedades de las Ovejas , Animales , Ectima Contagioso/epidemiología , Enfermedades de las Cabras/epidemiología , Cabras , Nigeria/epidemiología , Virus del Orf/genética , Filogenia , Ovinos , Enfermedades de las Ovejas/epidemiología , Encuestas y CuestionariosRESUMEN
Peste-des-petits-ruminants (PPR) and Goat pox (GTP) are two devastating and economically important transboundary animal diseases of small ruminants in Africa and Asia that have been difficult to control. This study however, investigated an outbreak of PPR and GTP in a mixed flock of indigenous sheep and goats in Kanam, North Central Nigeria. A total of nine sera and seven tissues (lungs, spleen, scab and skin) samples were collected and analysed in the laboratory using competitive enzyme linked immunosorbent assay (cELISA) for PPR antibodies and polymerase chain reaction (PCR) for detection of PPR virus (PPRV) and GTP virus (GTPV). Gene fragments of the nucleoprotein of PPRV and the G-protein-coupled chemokine receptor (GPCR) of GTPV were amplified and sequenced to confirm the presence of the causative viruses. Serologically, antibodies to PPRV were detected in all (9/9) sera collected. GTPV and PPRV was detected in corresponding samples (42.8% n = 3/7) of the scab/skin samples collected by both PCR and RT-PCR technique. The phylogenetic analysis of PPRV revealed that the virus belongs to lineage IV and clustered with viruses from Gabon and Cameroon. Similarly, the GTPV also clustered with other sequences from Burkina Faso and Yemen. The positive cELISA, RT-PCR and PCR results from samples collected from the same animals confirmed co-infection of PPR and GTP in this mixed flock of sheep and goats. This is the first report of concurrent infection of PPR and GTP in mixed flock of sheep and goats in Nigeria. Our findings underscore the need for farmers to vaccinate their flock to control spread and economic losses as result of these diseases.
Asunto(s)
Coinfección/veterinaria , Brotes de Enfermedades/veterinaria , Enfermedades de las Cabras/epidemiología , Peste de los Pequeños Rumiantes/epidemiología , Infecciones por Poxviridae/epidemiología , Enfermedades de las Ovejas/epidemiología , Animales , Capripoxvirus/aislamiento & purificación , Coinfección/epidemiología , Coinfección/virología , Enfermedades de las Cabras/virología , Cabras , Nigeria/epidemiología , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Filogenia , Infecciones por Poxviridae/virología , Ovinos , Enfermedades de las Ovejas/virologíaRESUMEN
Camel contagious ecthyma (CCE) is a viral disease of camelids that is caused by a Parapoxvirus (PPV) which is a DNA virus of the viral family: Poxviridae. Diseases affecting camels in Nigeria are scarcely reported. CCE or the laboratory detection of camel PPV (CPPV) has not been reported in Nigeria. This study investigated and described the clinical presentation of CCE and molecular detection of CPPV in Nigeria. Suspected cases of CCE were reported in a farm, live animal market and abattoir, in three different states (Bauchi, Plateau and Zamfara) in Northern Nigeria. Skin scabs, lungs, liver and intestine samples were collected. Polymerase chain reaction (PCR) was carried out using the primers which targets the RPO30 gene fragment of the genus PPV. The clinical signs observed from the suspected cases of CCE were proliferative skin lesions, papules, scabs on the lips and nares. CPPV was detected in 80.0% (4/5) of the samples collected by PCR. CCE was diagnosed based on clinical signs and PCR results. This is the first report of CCE in Nigeria. Further studies should be carried out to genetically characterize the CPPV circulating in Nigeria.
RESUMEN
BACKGROUND: Sixty (60) male West African Dwarf goats were reported with clinical signs of enlarged lymph nodes, scabs on the mouth, nose and ears. Two of the goats died and post mortem examination reveals enlarged submandibular lymph nodes and vesicular lesions on the tongue. Clinical diagnosis of Orf has been reported in Nigeria but this report is the confirmatory diagnosis of Orf in a suspected outbreak in an experimental farm in Uyo, Akwa Ibom State, Nigeria using molecular techniques. MATERIALS AND METHODS: Scabs, spleen and lymph node samples from goats suspected to have died from Orf were collected, transported on ice to the laboratory and homogenized. The DNA was extracted using QIAmp DNA minikit (Qiagen) according to the manufacturer's instructions. Orf virus (ORFV) was amplified using published ORFVspecific primers by PCR. RESULTS: Morbidity and mortality were 100% and 3.3% respectively, while ORFV was detected by PCR. Diagnosis of Orf was confirmed based on clinical signs of enlarged lymph nodes, scabs on the mouth, nose and ears, necropsy findings of enlarged submandibular lymph nodes and vesicular lesions on the tongue and PCR results. CONCLUSION: This may be the first report of molecular diagnosis of Orf in Nigeria. The 100% morbidity and 3.3% mortality rate is higher than previously reported thus Orf is becoming of greater economic importance than previously thought. It is therefore recommended that routine laboratory diagnosis of Orf be carried nationwide to determine the prevalence of Orf in Nigeria.