Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 54(3): 1082-93, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20086164

RESUMEN

This study aimed at elucidating the physiological basis of bacterial antibiotic tolerance. By use of a combined phenotypic and gene knockout approach, exogenous nutrient composition was identified as a crucial environmental factor which could mediate progressive development of tolerance with markedly varied drug specificity and sustainability. Deprivation of amino acids was a prerequisite for tolerance formation, conferring condition-specific phenotypes against inhibitors of cell wall synthesis and DNA replication (ampicillin and ofloxacin, respectively), according to the relative abundances of ammonium salts, phosphate, and nucleobases. Upon further depletion of glucose, this variable phase consistently evolved into a sustainable mode, along with enhanced capacity to withstand the effect of the protein synthesis inhibitor gentamicin. Nevertheless, all phenotypes produced during spontaneous nutrient depletion lacked the sustainable, multidrug-tolerant features exhibited by the stationary-phase population and were attributed to complex interaction between starvation-mediated metabolic and stress protection responses on the basis of the following reasons: (i) the nutrition-dependent tolerance characteristics observed suggested that adaptive biosynthetic mechanisms could suppress but not fully avert tolerance under transient starvation conditions; (ii) formation of specific phenotypes could be inhibited by suppressing protein synthesis prior to nutrient depletion; (iii) bacteriostatic drugs produced only weak tolerance in the absence of starvation signals; and (iv) the attenuation of the stringent and SOS responses, as well as the functionality of other putative tolerance determinants, including rpoS, hipA, glpD, and phoU, could alter the induction requirement and drug specificity of the resultant phenotypes. These data reveal the common physiological grounds characteristic of starvation responses and the onset of antibiotic tolerance in bacteria.


Asunto(s)
Antibacterianos/farmacología , Tolerancia a Medicamentos , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/fisiología , Respuesta al Choque Térmico , Medios de Cultivo/química , Escherichia coli K12/genética , Escherichia coli K12/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Pruebas de Sensibilidad Microbiana
2.
Antimicrob Agents Chemother ; 51(7): 2508-13, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17371822

RESUMEN

We report on the first occurrence of high-level gentamicin resistance (MICs > or = 512 microg/ml) in seven clinical isolates of Streptococcus pasteurianus from Hong Kong. These seven isolates were confirmed to be the species S. pasteurianus on the basis of nucleotide sequencing of the superoxide dismutase (sodA) gene. Epidemiological data as well as the results of pulse-field gel electrophoresis analysis suggested that the seven S. pasteurianus isolates did not belong to the same clone. Molecular characterization showed that they carried a chromosomal, transposon-borne resistance gene [aac(6')Ie-aph(2'')Ia] which was known to encode a bifunctional aminoglycoside-modifying enzyme. The genetic arrangement of this transposon was similar to that of Tn4001, a transposon previously recovered from Staphylococcus aureus and other gram-positive isolates. Genetic linkage with other resistance elements, such as the ermB gene for erythromycin resistance, was not evident. On the basis of these findings, we suggest that routine screening for high-level gentamicin resistance should be recommended for all clinically significant blood culture isolates. This is to avoid the inadvertent use of short-course combination therapy with penicillin and gentamicin, which may lead to the failure of treatment for endocarditis, the selection of drug-resistant Streptococcus pasteurianus and other gram-positive organisms, as well as the unnecessary usage of gentamicin, a drug with potential toxicity.


Asunto(s)
Antibacterianos/farmacología , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana/genética , Gentamicinas/farmacología , Streptococcus/efectos de los fármacos , Secuencia de Bases , ADN Bacteriano/genética , Electroforesis en Gel de Campo Pulsado , Hospitales , Humanos , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Estudios Retrospectivos , Streptococcus/genética , Streptococcus/aislamiento & purificación
3.
J Antimicrob Chemother ; 59(5): 866-73, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17360809

RESUMEN

OBJECTIVES: To characterize 250 drug-resistant Mycobacterium tuberculosis (MTB) isolates in Hong Kong with respect to their drug susceptibility phenotypes to five common anti-tuberculosis drugs (ofloxacin, rifampicin, ethambutol, isoniazid and pyrazinamide) and the relationship between such phenotypes and the patterns of genetic mutations in the corresponding resistance genes (gyrA, rpoB, embB, katG, inhA, ahpC and pncA). METHODS: The MIC values of the aforementioned anti-tuberculosis drugs were determined for each of the 250 drug-resistant MTB clinical isolates by the absolute concentration method. Genetic mutations in the corresponding resistance genes in these MTB isolates were identified by PCR-single-stranded conformation polymorphism/multiplex PCR amplimer conformation analysis (SSCP/MPAC), followed by DNA sequencing of the purified PCR products. RESULTS: Resistance to four or five drugs was commonly observed in these MTB isolates; such phenotypes accounted for over 34% of the 250 isolates. The most frequently observed phenotypes were those involving both rifampicin and isoniazid, with or without additional resistance to the other drugs. A total of 102 novel mutations, which accounted for 80% of all mutation types detected in the 7 resistance genes, were recovered. Correlation between phenotypic and mutational data showed that genetic changes in the gyrA, rpoB and katG genes were more consistently associated with a significant resistance phenotype. Despite this, however, a considerable proportion of resistant MTB isolates were found to harbour no detectable mutations in the corresponding gene loci. CONCLUSIONS: These findings expand the spectrum of potential resistance-related mutations in MTB clinical isolates and help consolidate the framework for the development of molecular methods for delineating the drug susceptibility profiles of MTB isolates in clinical laboratories.


Asunto(s)
Antituberculosos/farmacología , Genes Bacterianos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Hong Kong , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/aislamiento & purificación , Fenotipo , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple
4.
Antimicrob Agents Chemother ; 48(2): 596-601, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14742214

RESUMEN

A new strategy known as multiplex PCR amplimer conformation was developed for detection of mutation in the gyrA gene of 138 clinical isolates of Mycobacterium tuberculosis. The method generated a single-stranded and heteroduplex DNA banding pattern of multiplex PCR amplimers of the region of interest that was extremely sensitive to specific mutations, thus enabling much more sensitive and reliable mutation analysis compared to the standard single-stranded conformation polymorphism technique. The genetic profiles of the gyrA gene of the 138 isolates as detected by MPAC were confirmed by nucleotide sequencing and were found to correlate strongly with the in vitro susceptibilities of the mutant strains to six fluoroquinolones (ofloxacin, levofloxacin, sparfloxacin, moxifloxacin, gatifloxacin, and sitafloxacin). All 32 isolates that contained gyrA mutations exhibited cross-resistance to the six fluoroquinolones (ofloxacin MIC for 90% of strains > 16 mg/liter), although moxifloxacin, gatifloxacin, and sitafloxacin (MIC for 90% of strains /==" BORDER="0"> 16 mg/liter). All gyrA mutations were clustered in codons 90, 91, and 94, and aspartic acid 94 was most frequently mutated. Twenty-three isolates without gyrA mutations were also found to exhibit reduced susceptibility to ofloxacin (MIC for 90% of strains = 4 mg/liter), but largely remained susceptible to other drugs (MIC for 90% of strains

Asunto(s)
Antiinfecciosos/farmacología , Girasa de ADN/genética , Fluoroquinolonas/farmacología , Mutación/genética , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/microbiología , Cartilla de ADN , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Humanos , Levofloxacino , Pruebas de Sensibilidad Microbiana , Ofloxacino/farmacología , Fenotipo , Polimorfismo Conformacional Retorcido-Simple , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA