Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(16): 8751-8756, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36943737

RESUMEN

This study describes an instantaneously gas-induced dynamic transition of an industrial Cu/ZnO/Al2O3 catalyst. Cu/ZnO clusters become "alive" and lead to a promotion in reaction rate by almost one magnitude, in response to the variation of the reactant components. The promotional changes are functions of either CO2-to-CO or H2O-to-H2 ratio which determines the oxygen chemical potential thus drives Cu/ZnO clusters to undergo reconstruction and allows the maximum formation of Cu-Zn2+ sites for CH3OH synthesis.

2.
Angew Chem Int Ed Engl ; 57(39): 12886-12890, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-29975800

RESUMEN

Two-dimensional MFI zeolite nanosheets contain Brønsted acid sites partially confined at the intercept between micro- and mesopores. These acid sites exhibit exceptional reactivities and stabilities for C=C bond coupling and ring-closure reactions that transform light aldehydes to aromatics. These sites are much more effective than those confined within the micropores of MFI crystallites and those unconfined on H4 SiW12 O40 clusters or mesoporous aluminosilicate Al-MCM-41. The partially confined site environment solvates and stabilizes the transition states of the kinetically relevant steps during aromatization.

3.
J Am Chem Soc ; 139(20): 6928-6945, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28413882

RESUMEN

This study describes a new C-H bond activation pathway during CH4-CO2 reactions on oxophilic Ni-Co and Co clusters, unlike those established previously on Ni clusters. The initial C-H bond activation remains as the sole kinetically relevant step on Ni-Co, Ni, and Co clusters, but their specific reaction paths vary. On Ni clusters, C-H bond activation occurs via an oxidative addition step that involves a three-center (H3C···*···H)⧧ transition state, during which a Ni-atom inserts into the C-H bond and donates its electron density into the C-H bond's antibonding orbital. Ni-Co clusters are more oxophilic than Ni; thus, their surfaces are covered with oxygen adatoms. An oxygen adatom and a vicinal Co-atom form a metal-oxygen site-pair that cleaves the C-H bond via a σ bond metathesis reaction, during which the Co inserts into the C-H bond while the oxygen abstracts the leaving H-atom in a concerted, four-center (H3C···*···H···O*)⧧ transition state. Similarly, Co clusters also catalyze the σ bond metathesis step, but much less effectively because of their higher oxophilicities, much stronger binding to oxygen, and less effective hydrogen abstraction than Ni-Co clusters. On Ni-Co and Co clusters, the pseudo-first-order rate coefficients are single-valued functions of the CO2-to-CO ratio (or H2O-to-H2 ratio), because this ratio prescribes the oxygen chemical potentials and the relative abundances of metal-oxygen site-pairs through the water-gas shift equilibrium. The direct involvement of reactive oxygen in the kinetically relevant step leads to more effective CH4 turnovers and complete elimination of coke deposition on Ni-Co bimetallic clusters.

4.
Angew Chem Int Ed Engl ; 53(45): 12148-52, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25224881

RESUMEN

The periodic reactivity trend and the connection of kinetics to the thermodynamic activity of oxygen are established for the oxidation of methanol on metal clusters. First-order rate coefficients are a single-valued function of the O2 -to-CH3OH ratio, because this ratio, together with the rate constants for O2 and CH3OH activation, determine the oxygen chemical potential, thus the relative abundance of active sites and bulk chemical state of the clusters. CH3OH activation rate constants on oxygen-covered Ag, Pt, and Pd and on RuO2 clusters vary with the metal-oxygen binding strength in a classical volcano-type relation, because the oxygen-binding strength directly influences the reactivities of oxygen as H abstractors during the kinetically relevant CH3OH activation step. The differences in oxygen thermodynamic activity lead to five orders of magnitude variation in rates (Pt>Pd>RuO2>Ag, 373 K), because of its strong effects on the activation enthalpy and more prominently activation entropy in CH3OH activation.

5.
J Am Chem Soc ; 135(41): 15425-42, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24083571

RESUMEN

Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd(2+)-O(2-)) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd(2+)-O(2-) pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C···Pd···H)(‡) transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3(•)···*OH)(‡) that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd(2+) and vicinal O(2-), Pd(ox)-O(ox), cleave C-H bonds heterolytically via σ-bond metathesis, with Pd(2+) adding to the C-H bond, while O(2-) abstracts the H-atom to form a four-center (H3C(δ-)···Pd(ox)···H(δ+)···O(ox))(‡) transition state without detectable Pd(ox) reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory and experiment, resemble those prevalent on organometallic complexes. Metal centers present on surfaces as well as in homogeneous complexes act as both nucleophile and electrophile in oxidative additions, ligands (e.g., O* on surfaces) abstract H-atoms via reductive deprotonation of C-H bonds, and metal-ligand pairs, with the pair as electrophile and the metal as nucleophile, mediate σ-bond metathesis pathways.

6.
J Am Chem Soc ; 133(40): 15958-78, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21919447

RESUMEN

Kinetic and isotopic data and density functional theory treatments provide evidence for the elementary steps and the active site requirements involved in the four distinct kinetic regimes observed during CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants on Pt clusters. These four regimes exhibit distinct rate equations because of the involvement of different kinetically relevant steps, predominant adsorbed species, and rate and equilibrium constants for different elementary steps. Transitions among regimes occur as chemisorbed oxygen (O*) coverages change on Pt clusters. O* coverages are given, in turn, by a virtual O(2) pressure, which represents the pressure that would give the prevalent steady-state O* coverages if their adsorption-desorption equilibrium was maintained. The virtual O(2) pressure acts as a surrogate for oxygen chemical potentials at catalytic surfaces and reflects the kinetic coupling between C-H and O═O activation steps. O* coverages and virtual pressures depend on O(2) pressure when O(2) activation is equilibrated and on O(2)/CH(4) ratios when this step becomes irreversible as a result of fast scavenging of O* by CH(4)-derived intermediates. In three of these kinetic regimes, C-H bond activation is the sole kinetically relevant step, but occurs on different active sites, which evolve from oxygen-oxygen (O*-O*), to oxygen-oxygen vacancy (O*-*), and to vacancy-vacancy (*-*) site pairs as O* coverages decrease. On O*-saturated cluster surfaces, O*-O* site pairs activate C-H bonds in CH(4) via homolytic hydrogen abstraction steps that form CH(3) groups with significant radical character and weak interactions with the surface at the transition state. In this regime, rates depend linearly on CH(4) pressure but are independent of O(2) pressure. The observed normal CH(4)/CD(4) kinetic isotope effects are consistent with the kinetic-relevance of C-H bond activation; identical (16)O(2)-(18)O(2) isotopic exchange rates in the presence or absence of CH(4) show that O(2) activation steps are quasi-equilibrated during catalysis. Measured and DFT-derived C-H bond activation barriers are large, because of the weak stabilization of the CH(3) fragments at transition states, but are compensated by the high entropy of these radical-like species. Turnover rates in this regime decrease with increasing Pt dispersion, because low-coordination exposed Pt atoms on small clusters bind O* more strongly than those that reside at low-index facets on large clusters, thus making O* less effective in H-abstraction. As vacancies (*, also exposed Pt atoms) become available on O*-covered surfaces, O*-* site pairs activate C-H bonds via concerted oxidative addition and H-abstraction in transition states effectively stabilized by CH(3) interactions with the vacancies, which lead to much higher turnover rates than on O*-O* pairs. In this regime, O(2) activation becomes irreversible, because fast C-H bond activation steps scavenge O* as it forms. Thus, O* coverages are set by the prevalent O(2)/CH(4) ratios instead of the O(2) pressures. CH(4)/CD(4) kinetic isotope effects are much larger for turnovers mediated by O*-* than by O*-O* site pairs, because C-H (and C-D) activation steps are required to form the * sites involved in C-H bond activation. Turnover rates for CH(4)-O(2) reactions mediated by O*-* pairs decrease with increasing Pt dispersion, as in the case of O*-O* active structures, because stronger O* binding on small clusters leads not only to less reactive O* atoms, but also to lower vacancy concentrations at cluster surfaces. As O(2)/CH(4) ratios and O* coverages become smaller, O(2) activation on bare Pt clusters becomes the sole kinetically relevant step; turnover rates are proportional to O(2) pressures and independent of CH(4) pressure and no CH(4)/CD(4) kinetic isotope effects are observed. In this regime, turnover rates become nearly independent of Pt dispersion, because the O(2) activation step is essentially barrierless. In the absence of O(2), alternate weaker oxidants, such as H(2)O or CO(2), lead to a final kinetic regime in which C-H bond dissociation on *-* pairs at bare cluster surfaces limit CH(4) conversion rates. Rates become first-order in CH(4) and independent of coreactant and normal CH(4)/CD(4) kinetic isotope effects are observed. In this case, turnover rates increase with increasing dispersion, because low-coordination Pt atoms stabilize the C-H bond activation transition states more effectively via stronger binding to CH(3) and H fragments. These findings and their mechanistic interpretations are consistent with all rate and isotopic data and with theoretical estimates of activation barriers and of cluster size effects on transition states. They serve to demonstrate the essential role of the coverage and reactivity of chemisorbed oxygen in determining the type and effectiveness of surface structures in CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants, as well as the diversity of rate dependencies, activation energies and entropies, and cluster size effects that prevail in these reactions. These results also show how theory and experiments can unravel complex surface chemistries on realistic catalysts under practical conditions and provide through the resulting mechanistic insights specific predictions for the effects of cluster size and surface coordination on turnover rates, the trends and magnitude of which depend sensitively on the nature of the predominant adsorbed intermediates and the kinetically relevant steps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA