Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 102(1): 339-341, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494892

RESUMEN

During the COVID-19 pandemic, efforts have been made worldwide to develop effective therapies to address the devastating immune-mediated effects of SARS-CoV-2. With the exception of monoclonal antibody-mediated therapeutics and preventive approaches such as mass immunization, most experimental or repurposed drugs have failed in large randomized clinical trials (https://www.who.int/publications/i/item/therapeutics-and-covid-19-living-guideline). The worldwide spread of SARS-CoV-2 virus revealed specific susceptibilities to the virus among the elderly and individuals with age-related syndromes. These populations were more likely to experience a hyperimmune response characterized by a treatment-resistant acute lung pathology accompanied by multiple organ failure. These observations underscore the interplay between the virus, the biology of aging, and outcomes observed in the most severe cases of SARS-CoV-2 infection. The ectoenzyme CD38 has been implicated in the process of "inflammaging" in aged tissues. In a current publication, Horenstein et al. present evidence to support the hypothesis that CD38 plays a central role in altered immunometabolism resulting from COVID-19 infection. The authors discuss a critical but underappreciated trifecta of CD38-mediated NAD+ metabolism, aging, and COVID-19 immune response and speculate that the CD38/NAD+ axis is a promising therapeutic target for this disease.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , COVID-19/fisiopatología , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2 , ADP-Ribosil Ciclasa 1/genética , Envejecimiento , Regulación Enzimológica de la Expresión Génica , Humanos , Glicoproteínas de Membrana/genética , NAD/metabolismo
2.
Circ Res ; 133(1): 25-44, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37264926

RESUMEN

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/metabolismo , Inflamación , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
3.
J Surg Res ; 288: 329-340, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37060859

RESUMEN

INTRODUCTION: Peripheral nerve injuries have been associated with increased healthcare costs and decreased patients' quality of life. Aging represents one factor that slows the speed of peripheral nervous system (PNS) regeneration. Since cellular homeostasis imbalance associated with aging lead to an increased failure in nerve regeneration in mammals of advanced age, this systematic review aims to determine the main molecular and cellular mechanisms involved in peripheral nerve regeneration in aged murine models after a peripheral nerve injuries. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a literature search of 4 databases was conducted in July 2022 for studies comparing the peripheral nerve regeneration capability between young and aged murine models. RESULTS: After the initial search yielded 744 publications, ten articles fulfilled the inclusion criteria. These studies show that age-related changes such as chronic inflammatory state, delayed macrophages' response to injury, dysfunctional Schwann Cells (SCs), and microenvironment alterations cause a reduction in the regenerative capability of the PNS in murine models. Furthermore, identifying altered gene expression patterns of SC after nerve damage can contribute to the understanding of physiological modifications produced by aging. CONCLUSIONS: The interaction between macrophages and SC plays a crucial role in the nerve regeneration of aged models. Therefore, studies aimed at developing new and promising therapies for nerve regeneration should focus on these cellular groups to enhance the regenerative capabilities of the PNS in elderly populations.


Asunto(s)
Traumatismos de los Nervios Periféricos , Humanos , Animales , Ratones , Anciano , Traumatismos de los Nervios Periféricos/terapia , Calidad de Vida , Nervios Periféricos , Envejecimiento , Regeneración Nerviosa , Mamíferos
4.
J Neurosci ; 41(41): 8644-8667, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34493542

RESUMEN

Western-style diets cause disruptions in myelinating cells and astrocytes within the mouse CNS. Increased CD38 expression is present in the cuprizone and experimental autoimmune encephalomyelitis models of demyelination and CD38 is the main nicotinamide adenine dinucleotide (NAD+)-depleting enzyme in the CNS. Altered NAD+ metabolism is linked to both high fat consumption and multiple sclerosis (MS). Here, we identify increased CD38 expression in the male mouse spinal cord following chronic high fat consumption, after focal toxin [lysolecithin (LL)]-mediated demyelinating injury, and in reactive astrocytes within active MS lesions. We demonstrate that CD38 catalytically inactive mice are substantially protected from high fat-induced NAD+ depletion, oligodendrocyte loss, oxidative damage, and astrogliosis. A CD38 inhibitor, 78c, increased NAD+ and attenuated neuroinflammatory changes induced by saturated fat applied to astrocyte cultures. Conditioned media from saturated fat-exposed astrocytes applied to oligodendrocyte cultures impaired myelin protein production, suggesting astrocyte-driven indirect mechanisms of oligodendrogliopathy. In cerebellar organotypic slice cultures subject to LL-demyelination, saturated fat impaired signs of remyelination effects that were mitigated by concomitant 78c treatment. Significantly, oral 78c increased counts of oligodendrocytes and remyelinated axons after focal LL-induced spinal cord demyelination. Using a RiboTag approach, we identified a unique in vivo brain astrocyte translatome profile induced by 78c-mediated CD38 inhibition in mice, including decreased expression of proinflammatory astrocyte markers and increased growth factors. Our findings suggest that a high-fat diet impairs oligodendrocyte survival and differentiation through astrocyte-linked mechanisms mediated by the NAD+ase CD38 and highlights CD38 inhibitors as potential therapeutic candidates to improve myelin regeneration.SIGNIFICANCE STATEMENT Myelin disturbances and oligodendrocyte loss can leave axons vulnerable, leading to permanent neurologic deficits. The results of this study suggest that metabolic disturbances, triggered by consumption of a diet high in fat, promote oligodendrogliopathy and impair myelin regeneration through astrocyte-linked indirect nicotinamide adenine dinucleotide (NAD+)-dependent mechanisms. We demonstrate that restoring NAD+ levels via genetic inactivation of CD38 can overcome these effects. Moreover, we show that therapeutic inactivation of CD38 can enhance myelin regeneration. Together, these findings point to a new metabolic targeting strategy positioned to improve disease course in multiple sclerosis and other conditions in which the integrity of myelin is a key concern.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Astrocitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Vaina de Mielina/metabolismo , NAD+ Nucleosidasa/fisiología , Regeneración Nerviosa/fisiología , Remielinización/fisiología , ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , ADP-Ribosil Ciclasa 1/genética , Animales , Cerebelo/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/genética , Técnicas de Cultivo de Órganos
5.
J Mol Cell Cardiol ; 166: 11-22, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114253

RESUMEN

CD38 enzymatic activity regulates NAD+ and cADPR levels in mammalian tissues, and therefore has a prominent role in cellular metabolism and calcium homeostasis. Consequently, it is reasonable to hypothesize about its involvement in cardiovascular physiology as well as in heart related pathological conditions. AIM: To investigate the role of CD38 in cardiovascular performance, and its involvement in cardiac electrophysiology and calcium-handling. METHODS AND RESULTS: When submitted to a treadmill exhaustion test, a way of evaluating cardiovascular performance, adult male CD38KO mice showed better exercise capacity. This benefit was also obtained in genetically modified mice with catalytically inactive (CI) CD38 and in WT mice treated with antibody 68 (Ab68) which blocks CD38 activity. Hearts from these 3 groups (CD38KO, CD38CI and Ab68) showed increased NAD+ levels. When CD38KO mice were treated with FK866 which inhibits NAD+ biosynthesis, exercise capacity as well as NAD+ in heart tissue decreased to WT levels. Electrocardiograms of conscious unrestrained CD38KO and CD38CI mice showed lower basal heart rates and higher heart rate variability than WT mice. Although inactivation of CD38 in mice resulted in increased SERCA2a expression in the heart, the frequency of spontaneous calcium release from the sarcoplasmic reticulum under stressful conditions (high extracellular calcium concentration) was lower in CD38KO ventricular myocytes. When mice were challenged with caffeine-epinephrine, CD38KO mice had a lower incidence of bidirectional ventricular tachycardia when compared to WT ones. CONCLUSION: CD38 inhibition improves exercise performance by regulating NAD+ homeostasis. CD38 is involved in cardiovascular function since its genetic ablation decreases basal heart rate, increases heart rate variability and alters calcium handling in a way that protects mice from developing catecholamine induced ventricular arrhythmias.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Calcio , Glicoproteínas de Membrana/metabolismo , NAD , ADP-Ribosil Ciclasa 1/genética , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Catecolaminas/metabolismo , Tolerancia al Ejercicio , Frecuencia Cardíaca , Masculino , Mamíferos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , NAD/metabolismo
6.
Am J Physiol Cell Physiol ; 322(3): C521-C545, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35138178

RESUMEN

Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases. NAD metabolism is dynamic and maintained by synthesis and degradation. The enzyme CD38, one of the main NAD-consuming enzymes, is a key component of NAD homeostasis. The majority of CD38 is localized in the plasma membrane with its catalytic domain facing the extracellular environment, likely for the purpose of controlling systemic levels of NAD. Several cell types express CD38, but its expression predominates on endothelial cells and immune cells capable of infiltrating organs and tissues. Here we review potential roles of CD38 in health and disease and postulate ways in which CD38 dysregulation causes changes in NAD homeostasis and contributes to the pathophysiology of multiple conditions. Indeed, in animal models the development of infectious diseases, autoimmune disorders, fibrosis, metabolic diseases, and age-associated diseases including cancer, heart disease, and neurodegeneration are associated with altered CD38 enzymatic activity. Many of these conditions are modified in CD38-deficient mice or by blocking CD38 NADase activity. In diseases in which CD38 appears to play a role, CD38-dependent NAD decline is often a common denominator of pathophysiology. Thus, understanding dysregulation of NAD homeostasis by CD38 may open new avenues for the treatment of human diseases.


Asunto(s)
Glicósido Hidrolasas , NAD , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Células Endoteliales/metabolismo , Ratones , NAD/metabolismo , NAD+ Nucleosidasa/metabolismo
7.
Curr Opin Rheumatol ; 32(6): 488-496, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32941246

RESUMEN

PURPOSE OF REVIEW: Here we review recent literature on the emerging role of nicotinamide adenine dinucleotide (NAD) metabolism and its dysfunction via the enzyme CD38 in the pathogenesis of rheumatologic diseases. We evaluate the potential of targeting CD38 to ameliorate NAD-related metabolic imbalance and tissue dysfunction in the treatment of systemic sclerosis (SSc), systemic lupus erythematous (SLE), and rheumatoid arthritis (RA). RECENT FINDINGS: In this review, we will discuss emerging basic, preclinical, and human data that point to the novel role of CD38 in dysregulated NAD-homeostasis in SSc, SLE, and RA. In particular, recent studies implicate increased activity of CD38, one of the main enzymes in NAD catabolism, in the pathogenesis of persistent systemic fibrosis in SSc, and increased susceptibility of SLE patients to infections. We will also discuss recent studies that demonstrate that a cytotoxic CD38 antibody can promote clearance of plasma cells involved in the generation of RA antibodies. SUMMARY: Recent studies identify potential therapeutic approaches for boosting NAD to treat rheumatologic diseases including SSc, RA, and SLE, with particular attention to inhibition of CD38 enzymatic activity as a target. Key future directions in the field include the determination of the cell-type specificity and role of CD38 enzymatic activity versus CD38 structural roles in human diseases, as well as the indicators and potential side effects of CD38-targeted treatments.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Artritis Reumatoide/metabolismo , Lupus Eritematoso Sistémico/metabolismo , NAD+ Nucleosidasa/metabolismo , Esclerodermia Sistémica/metabolismo , ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , Artritis Reumatoide/inmunología , Humanos , Lupus Eritematoso Sistémico/inmunología , Esclerodermia Sistémica/inmunología
8.
Biochem Biophys Res Commun ; 513(2): 486-493, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30975470

RESUMEN

Tissue nicotinamide adenine dinucleotide (NAD+) decline has been implicated in aging. We have recently identified CD38 as a central regulator involved in tissue NAD+ decline during the aging process. CD38 is an ecto-enzyme highly expressed in endothelial and inflammatory cells. To date, the mechanisms that regulate CD38 expression in aging tissues characterized by the presence of senescent cells is not completely understood. Cellular senescence has been described as a hallmark of the aging process and these cells are known to secrete several factors including cytokines and chemokines through their senescent associated secretory phenotype (SASP). Here we investigated if the cellular senescence phenotype is involved in the regulation of CD38 expression and its NADase activity. We observed that senescent cells do not have high expression of CD38. However, the SASP factors secreted by senescent cells induced CD38 mRNA and protein expression and increased CD38-NADase activity in non-senescent cells such as endothelial cells or bone marrow derived macrophages. Our data suggest a link between cellular senescence and NAD+ decline in which SASP-mediated upregulation of CD38 can disrupt cellular NAD+ homeostasis.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Senescencia Celular , NAD/metabolismo , ADP-Ribosil Ciclasa 1/análisis , Envejecimiento , Animales , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Persona de Mediana Edad
9.
J Mol Cell Cardiol ; 118: 81-94, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29476764

RESUMEN

Following the onset of ischemia/reperfusion (I/R), CD38 activation occurs and is associated with depletion of NAD(P)(H) in the heart as well as myocardial injury and endothelial dysfunction. Studies with pharmacological inhibitors suggest that the NADP+-hydrolyzing ability of CD38 can deplete the NAD(P)(H) pools. However, there is a need for more specific studies on the importance of CD38 and its role in the process of endothelial dysfunction and myocardial injury in the post-ischemic heart. Therefore, experiments were performed in hearts of mice with global gene knockout of CD38. Isolated perfused CD38-/- and wild type (WT) mouse hearts were studied to determine the link between CD38 activation, the levels of NADP(H), endothelial dysfunction, and myocardial injury after I/R. Genetic deletion of CD38 preserves the myocardial and endothelial NADP(H) pools compared to WT. Whole heart BH4 levels in CD38-/- hearts were also preserved. Post-ischemic levels of cGMP were greatly depleted in WT hearts, but preserved to near baseline levels in CD38-/- hearts. The preservation of these metabolite pools in CD38-/- hearts was accompanied by near full recovery of NOS-dependent coronary flow, while in WT hearts, severe impairment of endothelial function and NOS uncoupling occurred with decreased NO and enhanced superoxide generation. CD38-/- hearts also exhibited marked protection against I/R with preserved glutathione levels, increased recovery of left ventricular contractile function, decreased myocyte enzyme release, and decreased infarct size. Thus, CD38 activation causes post-ischemic depletion of NADP(H) within the heart, with severe depletion from the endothelium, resulting in endothelial dysfunction and myocardial injury.


Asunto(s)
ADP-Ribosil Ciclasa 1/genética , Eliminación de Gen , Isquemia Miocárdica/genética , Nucleótidos/metabolismo , Piridinas/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Biopterinas/análogos & derivados , Biopterinas/metabolismo , GMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Glutatión/metabolismo , Hemodinámica , Masculino , Ratones Endogámicos C57BL , Contracción Miocárdica , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , NAD/metabolismo , NADP/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nucleotidasas/metabolismo , Multimerización de Proteína , Transducción de Señal , Superóxidos/metabolismo
10.
J Immunol ; 195(8): 3685-93, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26378077

RESUMEN

Alternative NF-κB signaling is crucial for B cell activation and Ig production, and it is mainly regulated by the inhibitor of κ B kinase (IKK) regulatory complex. Dysregulation of alternative NF-κB signaling in B cells could therefore lead to hyperactive B cells and Ig overproduction. In our previous, study we found that deleted in breast cancer 1 (DBC1) is a suppressor of the alternative NF-κB pathway to attenuate B cell activation. In this study, we report that loss of DBC1 results in spontaneous overproduction of Ig in mice after 10 mo of age. Using a double mutant genetic model, we confirm that DBC1 suppresses B cell activation through RelB inhibition. At the molecular level, we show that DBC1 interacts with alternative NF-κB members RelB and p52 through its leucine zipper domain. In addition, phosphorylation of DBC1 at its C terminus by IKKα facilitates its interaction with RelB and IKKα, indicating that DBC1-mediated suppression of alternative NF-κB is regulated by IKKα. Our results define the molecular mechanism of DBC1 inhibition of alternative NF-κB activation in suppressing B cell activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Linfocitos B/inmunología , Quinasa I-kappa B/inmunología , Activación de Linfocitos , Factor de Transcripción ReIB/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Linfocitos B/citología , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Ratones , Ratones Noqueados , Células 3T3 NIH , Fosforilación/genética , Fosforilación/inmunología , Factor de Transcripción ReIB/genética
11.
J Am Soc Nephrol ; 27(5): 1437-47, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26538633

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by the accumulation of kidney cysts that ultimately leads to loss of renal function and kidney failure. At present, the treatment for ADPKD is largely supportive. Multiple studies have focused on pharmacologic approaches to slow the development of the cystic disease; however, little is known about the role of nutrition and dietary manipulation in PKD. Here, we show that food restriction (FR) effectively slows the course of the disease in mouse models of ADPKD. Mild to moderate (10%-40%) FR reduced cyst area, renal fibrosis, inflammation, and injury in a dose-dependent manner. Molecular and biochemical studies in these mice indicate that FR ameliorates ADPKD through a mechanism involving suppression of the mammalian target of the rapamycin pathway and activation of the liver kinase B1/AMP-activated protein kinase pathway. Our data suggest that dietary interventions such as FR, or treatment that mimics the effects of such interventions, may be potential and novel preventive and therapeutic options for patients with ADPKD.


Asunto(s)
Alimentos , Riñón Poliquístico Autosómico Dominante/dietoterapia , Riñón Poliquístico Autosómico Dominante/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Transducción de Señal
12.
Drug Metab Dispos ; 44(11): 1742-1751, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27531952

RESUMEN

Overdose of isoniazid (INH), an antituberculosis drug, can be life-threatening because of neurotoxicity. In clinical practice for management of INH overdose and acute toxicity, the potential of INH-induced hepatotoxicity is also considered. However, the biochemical basis of acute INH toxicity in the liver remains elusive. In the current study, we used an untargeted metabolomic approach to explore the acute effects of INH on endobiotic homeostasis in mouse liver. We found that overdose of INH resulted in accumulation of oleoyl-l-carnitine and linoleoyl-l-carnitine in the liver, indicating mitochondrial dysfunction. We also revealed the interactions between INH and fatty acyl-CoAs by identifying INH-fatty acid amides. In addition, we found that overdose of INH led to the accumulation of heme and oxidized NAD in the liver. We also identified an INH and NAD adduct in the liver. In this adduct, the nicotinamide moiety in NAD was replaced by INH. Furthermore, we illustrated that overdose of INH depleted vitamin B6 in the liver and blocked vitamin B6-dependent cystathionine degradation. These data suggest that INH interacts with multiple biochemical pathways in the liver during acute poisoning caused by INH overdose.


Asunto(s)
Antituberculosos/efectos adversos , Antituberculosos/metabolismo , Homeostasis/efectos de los fármacos , Isoniazida/efectos adversos , Isoniazida/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Animales , Carnitina/metabolismo , Homeostasis/fisiología , Metabolómica/métodos , Ratones , Oxidación-Reducción/efectos de los fármacos , Vitamina B 6/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 35(6): 1401-12, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25882068

RESUMEN

OBJECTIVE: Neuropilin-1 (NRP-1) is a multidomain membrane receptor involved in angiogenesis and development of neuronal circuits, however, the role of NRP-1 in cardiovascular pathophysiology remains elusive. APPROACH AND RESULTS: In this study, we first observed that deletion of NRP-1 induced peroxisome proliferator-activated receptor γ coactivator 1α in cardiomyocytes and vascular smooth muscle cells, which was accompanied by dysregulated cardiac mitochondrial accumulation and induction of cardiac hypertrophy- and stress-related markers. To investigate the role of NRP-1 in vivo, we generated mice lacking Nrp-1 in cardiomyocytes and vascular smooth muscle cells (SM22-α-Nrp-1 KO), which exhibited decreased survival rates, developed cardiomyopathy, and aggravated ischemia-induced heart failure. Mechanistically, we found that NRP-1 specifically controls peroxisome proliferator-activated receptor γ coactivator 1 α and peroxisome proliferator-activated receptor γ in cardiomyocytes through crosstalk with Notch1 and Smad2 signaling pathways, respectively. Moreover, SM22-α-Nrp-1 KO mice exhibited impaired physical activities and altered metabolite levels in serum, liver, and adipose tissues, as demonstrated by global metabolic profiling analysis. CONCLUSIONS: Our findings provide new insights into the cardioprotective role of NRP-1 and its influence on global metabolism.


Asunto(s)
Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , Neuropilina-1/metabolismo , Animales , Homeostasis , Ratones Noqueados , Proteínas de Microfilamentos , Mitocondrias Cardíacas/metabolismo , Proteínas Musculares , Músculo Liso Vascular/metabolismo , Miocitos Cardíacos/metabolismo , PPAR gamma/metabolismo , Receptor Cross-Talk , Receptor Notch1/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Factores de Transcripción/metabolismo
14.
J Immunol ; 193(11): 5515-24, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25362179

RESUMEN

CD40 and BAFFR signaling play important roles in B cell proliferation and Ig production. In this study, we found that B cells from mice with deletion of Dbc1 gene (Dbc1(-/-)) show elevated proliferation, and IgG1 and IgA production upon in vitro CD40 and BAFF, but not BCR and LPS stimulation, indicating that DBC1 inhibits CD40/BAFF-mediated B cell activation in a cell-intrinsic manner. Microarray analysis and chromatin immunoprecipitation experiments reveal that DBC1 inhibits B cell function by selectively suppressing the transcriptional activity of alternative NF-κB members RelB and p52 upon CD40 stimulation. As a result, when immunized with nitrophenylated-keyhole limpet hemocyanin, Dbc1(-/-) mice produce significantly increased levels of germinal center B cells, plasma cells, and Ag-specific Ig. Finally, loss of DBC1 in mice leads to higher susceptibility to experimental autoimmune myasthenia gravis. Our study identifies DBC1 as a novel regulator of B cell activation by suppressing the alternative NF-κB pathway.


Asunto(s)
Linfocitos B/inmunología , Miastenia Gravis Autoinmune Experimental/inmunología , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Plasmáticas/inmunología , Animales , Formación de Anticuerpos/genética , Factor Activador de Células B/metabolismo , Antígenos CD40/metabolismo , Proteínas de Ciclo Celular , Diferenciación Celular/genética , Células HEK293 , Humanos , Tolerancia Inmunológica , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos , Ratones Noqueados , Análisis por Micromatrices , Miastenia Gravis Autoinmune Experimental/genética , FN-kappa B/genética , Células 3T3 NIH , Proteínas del Tejido Nervioso/genética , Activación Transcripcional/genética
15.
J Biol Chem ; 289(9): 5518-27, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24415752

RESUMEN

Liver gluconeogenesis is essential to provide energy to glycolytic tissues during fasting periods. However, aberrant up-regulation of this metabolic pathway contributes to the progression of glucose intolerance in individuals with diabetes. Phosphoenolpyruvate carboxykinase (PEPCK) expression plays a critical role in the modulation of gluconeogenesis. Several pathways contribute to the regulation of PEPCK, including the nuclear receptor Rev-erbα and the histone deacetylase SIRT1. Deleted in breast cancer 1 (DBC1) is a nuclear protein that binds to and regulates both Rev-erbα and SIRT1 and, therefore, is a candidate to participate in the regulation of PEPCK. In this work, we provide evidence that DBC1 regulates glucose metabolism and the expression of PEPCK. We show that DBC1 levels decrease early in the fasting state. Also, DBC1 KO mice display higher gluconeogenesis in a normal and a high-fat diet. DBC1 absence leads to an increase in PEPCK mRNA and protein expression. Conversely, overexpression of DBC1 results in a decrease in PEPCK mRNA and protein levels. DBC1 regulates the levels of Rev-erbα, and manipulation of Rev-erbα activity or levels prevents the effect of DBC1 on PEPCK. In addition, Rev-erbα levels decrease in the first hours of fasting. Finally, knockdown of the deacetylase SIRT1 eliminates the effect of DBC1 knockdown on Rev-erbα levels and PEPCK expression, suggesting that the mechanism of PEPCK regulation is, at least in part, dependent on the activity of this enzyme. Our results point to DBC1 as a novel regulator of gluconeogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Gluconeogénesis/fisiología , Glucosa/biosíntesis , Hígado/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Grasas de la Dieta/farmacología , Ayuno/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Glucosa/genética , Células Hep G2 , Humanos , Hígado/citología , Ratones , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/biosíntesis , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo
16.
J Biol Chem ; 288(24): 17745-58, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23589285

RESUMEN

The function of Krüppel-like factor 11 (KLF11) in the regulation of metabolic pathways is conserved from flies to human. Alterations in KLF11 function result in maturity onset diabetes of the young 7 (MODY7) and neonatal diabetes; however, the mechanisms underlying the role of this protein in metabolic disorders remain unclear. Here, we investigated how the A347S genetic variant, present in MODY7 patients, modulates KLF11 transcriptional activity. A347S affects a previously identified transcriptional regulatory domain 3 (TRD3) for which co-regulators remain unknown. Structure-oriented sequence analyses described here predicted that the KLF11 TRD3 represents an evolutionarily conserved protein domain. Combined yeast two-hybrid and protein array experiments demonstrated that the TRD3 binds WD40, WWI, WWII, and SH3 domain-containing proteins. Using one of these proteins as a model, guanine nucleotide-binding protein ß2 (Gß2), we investigated the functional consequences of KLF11 coupling to a TRD3 binding partner. Combined immunoprecipitation and biomolecular fluorescence complementation assays confirmed that activation of three different metabolic G protein-coupled receptors (ß-adrenergic, secretin, and cholecystokinin) induces translocation of Gß2 to the nucleus where it directly binds KLF11 in a manner that is disrupted by the MODY7 A347S variant. Using genome-wide expression profiles, we identified metabolic gene networks impacted upon TRD3 disruption. Furthermore, A347S disrupted KLF11-mediated increases in basal insulin levels and promoter activity and blunted glucose-stimulated insulin secretion. Thus, this study characterizes a novel protein/protein interaction domain disrupted in a KLF gene variant that associates to MODY7, contributing to our understanding of gene regulation events in complex metabolic diseases.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas Represoras/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Células CHO , Proteínas de Ciclo Celular/química , Secuencia Conservada , Cricetinae , Evolución Molecular , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Glucosa/fisiología , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Datos de Secuencia Molecular , Mutación Missense , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas Represoras/química , Transducción de Señal , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
17.
Nature ; 451(7175): 207-10, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18185591

RESUMEN

Calcium controls a number of critical events, including motility, secretion, cell invasion and egress by apicomplexan parasites. Compared to animal and plant cells, the molecular mechanisms that govern calcium signalling in parasites are poorly understood. Here we show that the production of the phytohormone abscisic acid (ABA) controls calcium signalling within the apicomplexan parasite Toxoplasma gondii, an opportunistic human pathogen. In plants, ABA controls a number of important events, including environmental stress responses, embryo development and seed dormancy. ABA induces production of the second-messenger cyclic ADP ribose (cADPR), which controls release of intracellular calcium stores in plants. cADPR also controls intracellular calcium release in the protozoan parasite T. gondii; however, previous studies have not revealed the molecular basis of this pathway. We found that addition of exogenous ABA induced formation of cADPR in T. gondii, stimulated calcium-dependent protein secretion, and induced parasite egress from the infected host cell in a density-dependent manner. Production of endogenous ABA within the parasite was confirmed by purification (using high-performance liquid chromatography) and analysis (by gas chromatography-mass spectrometry). Selective disruption of ABA synthesis by the inhibitor fluridone delayed egress and induced development of the slow-growing, dormant cyst stage of the parasite. Thus, ABA-mediated calcium signalling controls the decision between lytic and chronic stage growth, a developmental switch that is central in pathogenesis and transmission. The pathway for ABA production was probably acquired with an algal endosymbiont that was retained as a non-photosynthetic plastid known as the apicoplast. The plant-like nature of this pathway may be exploited therapeutically, as shown by the ability of a specific inhibitor of ABA synthesis to prevent toxoplasmosis in the mouse model.


Asunto(s)
Ácido Abscísico/metabolismo , Señalización del Calcio , Calcio/metabolismo , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo , Ácido Abscísico/análisis , Ácido Abscísico/biosíntesis , Ácido Abscísico/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , ADP-Ribosa Cíclica/biosíntesis , ADP-Ribosa Cíclica/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Reguladores del Crecimiento de las Plantas , Proteínas Protozoarias/metabolismo , Piridonas/farmacología , Toxoplasma/efectos de los fármacos , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Toxoplasmosis/patología , Toxoplasmosis/prevención & control
18.
Biochem J ; 451(3): 453-61, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23398316

RESUMEN

The nuclear receptor Rev-erbα has been implicated as a major regulator of the circadian clock and integrates circadian rhythm and metabolism. Rev-erbα controls circadian oscillations of several clock genes and Rev-erbα protein degradation is important for maintenance of the circadian oscillations and also for adipocyte differentiation. Elucidating the mechanisms that regulate Rev-erbα stability is essential for our understanding of these processes. In the present paper, we report that the protein DBC1 (Deleted in Breast Cancer 1) is a novel regulator of Rev-erbα. Rev-erbα and DBC1 interact in cells and in vivo, and DBC1 modulates the Rev-erbα repressor function. Depletion of DBC1 by siRNA (small interfering RNA) in cells or in DBC1-KO (knockout) mice produced a marked decrease in Rev-erbα protein levels, but not in mRNA levels. In contrast, DBC1 overexpression significantly enhanced Rev-erbα protein stability by preventing its ubiquitination and degradation. The regulation of Rev-erbα protein levels and function by DBC1 depends on both the N-terminal and C-terminal domains of DBC1. More importantly, in cells depleted of DBC1, there was a dramatic decrease in circadian oscillations of both Rev-erbα and BMAL1. In summary, our data identify DBC1 as an important regulator of the circadian receptor Rev-erbα and proposes that Rev-erbα could be involved in mediating some of the physiological effects of DBC1.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , ARN Mensajero/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Plásmidos , Estabilidad Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Transfección
19.
Aging Cell ; 23(1): e13920, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37424179

RESUMEN

The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.


Asunto(s)
NAD , Nucleótidos , NAD/metabolismo , Senescencia Celular
20.
Cardiovasc Res ; 120(3): 286-300, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38271281

RESUMEN

AIMS: Doxorubicin (DXR) is a chemotherapeutic agent that causes dose-dependent cardiotoxicity. Recently, it has been proposed that the NADase CD38 may play a role in doxorubicin-induced cardiotoxicity (DIC). CD38 is the main NAD+-catabolizing enzyme in mammalian tissues. Interestingly, in the heart, CD38 is mostly expressed as an ecto-enzyme that can be targeted by specific inhibitory antibodies. The goal of the present study is to characterize the role of CD38 ecto-enzymatic activity in cardiac metabolism and the development of DIC. METHODS AND RESULTS: Using both a transgenic animal model and a non-cytotoxic enzymatic anti-CD38 antibody, we investigated the role of CD38 and its ecto-NADase activity in DIC in pre-clinical models. First, we observed that DIC was prevented in the CD38 catalytically inactive (CD38-CI) transgenic mice. Both left ventricular systolic function and exercise capacity were decreased in wild-type but not in CD38-CI mice treated with DXR. Second, blocking CD38-NADase activity with the specific antibody 68 (Ab68) likewise protected mice against DIC and decreased DXR-related mortality by 50%. A reduction of DXR-induced mitochondrial dysfunction, energy deficiency, and inflammation gene expression were identified as the main mechanisms mediating the protective effects. CONCLUSION: NAD+-preserving strategies by inactivation of CD38 via a genetic or a pharmacological-based approach improve cardiac energetics and reduce cardiac inflammation and dysfunction otherwise seen in an acute DXR cardiotoxicity model.


Asunto(s)
NAD+ Nucleosidasa , NAD , Ratones , Animales , NAD+ Nucleosidasa/metabolismo , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , NAD/metabolismo , Cardiotoxicidad , Ratones Transgénicos , Doxorrubicina/toxicidad , Inflamación , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA