Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pest Manag Sci ; 77(5): 2350-2357, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33421266

RESUMEN

BACKGROUND: The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is a serious pest of maize. Farming systems such as push-pull or maize-legume intercropping have been reported to reduce FAW infestations significantly. However, the exact mechanisms involved in FAW management have not been practically elucidated. We therefore assessed larval host preference, feeding and survival rate when exposed to four host plants commonly used in push-pull and legume intercropping. We also compared adult moths' oviposition preference between maize and other grasses used as trap crops in push-pull. RESULTS: The larval orientation and settlement study showed that maize was the most preferred host plant followed by bean, desmodium and Brachiaria brizantha cv Mulato II. The larval arrest and dispersal experiment showed that mean number of larvae was significantly higher on maize than on Desmodium or B. brizantha cv Mulato II. However, no significant differences were found between maize and bean after 24 h. Maize was the most consumed plant, followed by bean, desmodium and finally brachiaria. The mean percentage of survival to the pupation stage was significantly higher on maize. The study on FAW oviposition preference showed no significant differences in egg deposited between maize and other grasses. However, B. brizantha cv Xaraes, which received more eggs than maize, could be a promising alternative to B. brizantha cv Mulato II for the control of FAW. CONCLUSION: The study provides a better understanding of the mechanisms involved in the control of fall armyworm under the push-pull and maize legume intercropping. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Brachiaria , Phaseolus , África , Animales , Femenino , Larva , Spodoptera , Zea mays
2.
Front Plant Sci ; 8: 1809, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163562

RESUMEN

In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by the frit fly, Oscinella frit, a major pest of cereals. Hence, beneficial impacts differed between the beneficial soil organisms and were most evident for plants under biotic stress. Overall, our findings indicate that in wheat production under the test conditions the three beneficial soil organisms can establish nicely and are compatible, but their combined application provides no additional benefits. Further studies are required, also in other cropping systems, to fine-tune the functional interactions among beneficial soil organisms, crops, and the environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA