RESUMEN
Peruvian corn biodiversity is one of the highest in the world and may represent an important natural source of health relevant phenolic bioactive compounds whose potential needs to be investigated. This study investigated twenty-two Peruvian corn samples corresponding to five corn races (Arequipeño, Cabanita, Kculli, Granada and Coruca) in relation to their total phenolic contents (TPC), anthocyanin contents, Ultra-Performance Liquid Chromatography (UPLC) phenolic profiles and antioxidant capacity (ABTS and ORAC methods). Subsequently using both free and cell-wall bound phenolic fractions their health relevance targeting hyperglycemia (α-glucosidase and α-amylase inhibition) and obesity (lipase inhibition) potentials was evaluated using in vitro assay models. Antioxidant capacity and TPC were high in bound fractions from yellow-colored races in contrast to the purple-colored race (Kculli) which had high TPC (mainly anthocyanins) and antioxidant capacity in the free form. The major phenolic acids detected by UPLC were ferulic and p-coumaric acids. High α-glucosidase (32.5-76.1%, 25 mg sample dose) and moderate α-amylase inhibitory activities (13.6-29.0%, 250 mg sample dose) were found in all free fractions, but only samples from the Kculli race had lipase inhibitory activity (58.45-92.16%, 12.5 mg sample dose). Principal component analysis revealed that the variability of data was affected by the race and the α-glucosidase and lipase inhibitory activities positively correlated with anthocyanins and antioxidant capacity. Some accessions of Kculli, Granada and Cabanita races are promising for future breeding strategies focused on the development of improved corn varieties targeted for the design of functional foods relevant for hyperglycemia and obesity prevention.
RESUMEN
Mashua (Tropaeolum tuberosum) is an Andean tuber with a high content of glucosinolates (GLSs). GLSs subjected to biotransformation by plant enzymes or enzymes of the gastrointestinal microbiota give rise to biologically active compounds, to which chemo preventive properties are attributed. In this work, the biotransformation of mashua GLSs was evaluated in vitro by six strains of lactic acid bacteria (LAB) and in vivo using rats with and without previous LAB dosing. The results showed that L. rhamnosus GG utilized the totality of glucosinalbin and glucotropaeolin, and 46.7 % of glucoaubrietin. Four GLSs derivatives were detected. The GLSs were absorbed and metabolized by the rats with low contents in feces (0.02 %) and urine (0.59 %) and were detected up to 3 h after consumption in plasma. The results showed that probiotic bacteria play an important role in transforming GLSs into beneficial compounds for the health of consumers.
Asunto(s)
Lactobacillales , Tropaeolum , Animales , Ratas , Glucosinolatos , Biotransformación , HecesRESUMEN
The high maize (Zea mays L.) diversity in Peru has been recognized worldwide, but the investigation focused on its integral health-relevant and bioactive characterization is limited. Therefore, this research aimed at studying the variability of the primary and the secondary (free and dietary fiber-bound phenolic, and carotenoid compounds) metabolites of three maize types (white, red, and orange) from the Peruvian Andean race Cabanita at different maturity stages (milk-S1, dough-S2, and mature-S3) using targeted and untargeted methods. In addition, their antioxidant potential, and α-amylase and α-glucosidase inhibitory activities relevant for hyperglycemia management were investigated using in vitro models. Results revealed a high effect of the maize type and the maturity stage. All maize types had hydroxybenzoic and hydroxycinnamic acids in their free phenolic fractions, whereas major bound phenolic compounds were ferulic acid, ferulic acid derivatives, and p-coumaric acid. Flavonoids such as luteolin derivatives and anthocyanins were specific in the orange and red maize, respectively. The orange and red groups showed higher phenolic ranges (free + bound) (223.9-274.4 mg/100 g DW, 193.4- 229.8 mg/100 g DW for the orange and red maize, respectively) than the white maize (162.2-225.0 mg/100 g DW). Xanthophylls (lutein, zeaxanthin, neoxanthin, and a lutein isomer) were detected in all maize types. However, the orange maize showed the highest total carotenoid contents (3.19-5.87 µg/g DW). Most phenolic and carotenoid compounds decreased with kernel maturity in all cases. In relation to the primary metabolites, all maize types had similar fatty acid contents (linoleic acid > oleic acid > palmitic acid > α-linolenic acid > stearic acid) which increased with kernel development. Simple sugars, alcohols, amino acids, free fatty acids, organic acids, amines, and phytosterols declined along with grain maturity and were overall more abundant in white maize at S1. The in vitro functionality was similar among Cabanita maize types, but it decreased with the grain development, and showed a high correlation with the hydrophilic free phenolic fraction. Current results suggest that the nutraceutical characteristics of orange and white Cabanita maize are better at S1 and S2 stages while the red maize would be more beneficial at S3.
RESUMEN
The present study evaluated the performance of some enzymatic and non-enzymatic antioxidant systems against oxidative stress for 10 to 30 d of refrigeration (R) and 15 to 50 d in controlled atmosphere (CA) conditions in both exocarp and mesocarp of Hass avocados from early and late harvests and at shelf life (SL) or consumption maturity. The possible relationship of the antioxidant systems with the occurrence of physiological disorders is also evaluated. The results indicate that the enzymatic system-superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), phenylalanine ammonium lyase (PAL) and polyphenoloxidase (PPO)-as well as the non-enzymatic system-such as phenolic compounds (PC)-showed different responses to the stress generated during storage and shelf life. In general, SOD, CAT, PAL and PPO did not significantly vary in storage (R or CA). At consumption maturity, SOD, POD and PAL activities decreased in the mesocarp (RSL and CASL), while CAT increased in the exocarp for CASL15-50d. PC instead decreased in the exocarp as the harvest period progressed while it increased in the mesocarp. Physiological disorders (dark spots) showed only in refrigeration on the exocarp at R30d and in mesocarp at RSL30d coincident with low SOD and low SOD and POD activity values, as well as low PC contents (p-coumaric and its derivatives and caffeic acid derivatives), respectively. The results support the use of CA as a postharvest technology to prevent the development of physiological disorders through the joint action of antioxidative defenses during avocado transport to distant markets until consumption maturity is reached.
RESUMEN
Exocarp color de-synchronization with softening of 'Hass' avocado is a relevant recurrent problem for the avocado supply chain. This study aimed to unravel the mechanisms driving this de-synchronization integrating omics datasets from avocado exocarp of different storage conditions and color phenotypes. In addition, we propose potential biomarkers to predict color synchronized/de-synchronized fruit. Integration of transcriptomics, proteomics and metabolomics and network analysis revealed eight transcription factors associated with differentially regulated genes between regular air (RA) and controlled atmosphere (CA) and twelve transcription factors related to avocado fruit color de-synchronization control in ready-to-eat stage. CA was positively correlated to auxins, ethylene, cytokinins and brassinosteroids-related genes, while RA was characterized by enrichment of cell wall remodeling and abscisic acid content associated genes. At ready-to-eat higher contents of flavonoids, abscisic acid and brassinosteroids were associated with color-softening synchronized avocados. In contrast, de-synchronized fruit revealed increases of jasmonic acid, salicylic acid and auxin levels.
Asunto(s)
Frutas , Persea , Frutas/genética , Persea/genética , Ácido Abscísico , Brasinoesteroides , MultiómicaRESUMEN
Avocado consumption and trade are increasing worldwide, with North America and Europe being the main importing regions. Spain is the major European avocado producer (90% of the production), yet it only supplies 10% of the market. Consequently, more than 90% of the avocados consumed in Europe are imported from overseas, mainly from Chile and Peru. In this work, the Life Cycle Assessment (LCA) impact associated with the transport of two avocado supply chains (short (Spanish) and long (Chilean)) and the effect of the fruit origin and distance of both chains on primary and secondary metabolites from harvest to edible ripeness were evaluated using a gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to diode array detection (LC-DAD) based metabolite analysis. The LCA transport impact of the fresh supply chain from production centers in Chile (Quillota) and Spain (Malaga), and then the distribution to several cities in Europe, suggested road export from Spain to European capitals to have the lowest impact (0.14 to 0.22 kg CO2 eq/kg of avocado). When export from Chile was considered, the option of oceanic freight to European ports closer to final destinations was clearly a better option (0.21 to 0.26 kg CO2 eq/kg) than via the Algeciras port in Spain followed by road transport to final destinations in European capitals (0.34 to 0.43 kg CO2 eq/kg), although the situation could be somewhat different if the avocados are transported from the destination ports in northern Europe to long-distance capitals in other European countries. Fruit origin had a significant impact on avocado primary and secondary metabolites. The conditions of the supply chain itself (10 d in cold storage in regular conditions vs. 30 d cold storage + controlled atmosphere conditions) largely influence the fate of some metabolites that certainly affect the pool of metabolites at edible ripeness. The long-assumed hypothesis that the longer the supply chain the more negative impact on nutritional and functional compounds might not hold in this case, as long as transport conditions are adequate in terms of temperature, atmosphere conditions, and time considering distance from origin to destination.
RESUMEN
Avocado cv. Hass consumption has expanded worldwide given its nutritional, sensory, and functional attributes. In this work, avocado fruit from two harvests was subjected to hydrothermal treatment (38 °C for 1 h) or left untreated (control) and then stored for 30 and 50 days in a controlled atmosphere (4 kPa O2 and 6 kPa CO2 at 7 °C) (HTCA and CA, respectively) with subsequent ripening at ~20 °C. The fruit was evaluated for primary and secondary metabolites at harvest, after storage, and after reaching edible ripeness. A decrease from harvest to edible ripeness in mannoheptulose and perseitol was observed while ß-sitosterol, hydrophilic and lipophilic antioxidant activity (H-AOX, L-AOX), abscisic acid, and total phenolics (composed of p-coumaric and caffeic acids such as aglycones or their derivatives) increased. HTCA fruit at edible ripeness displayed higher contents of mannoheptulose, perseitol, ß-sitosterol, L-AOX, caffeic acid, and p-coumaric acid derivatives, while CA fruit presented higher contents of α-tocopherol, H-AOX, and syringic acid glycoside for both harvests and storage times. The results indicate that a hydrothermal treatment prior to CA enables fruit of high nutritional value characterized by enhanced content of phenolic compounds at edible ripeness to reach distant markets.
RESUMEN
Surface pitting is a serious postharvest physiological disorder in sweet cherries that is observed as skin depressions developed days after bruising. This work aims to compare two cultivars displaying different pitting susceptibilities ('Kordia': relatively resistant; 'Sweetheart': relatively susceptible) using metabolomics profiling and cell wall sugar characterization at different developmental stages and during postharvest storage. Kordia was significantly firmer than Sweetheart, with 1.4-fold more alcohol-insoluble residues (AIRs). A significant correlation was observed between AIRs and deformation, indicating that the highest yields of cell wall material are positively correlated with the resistance to rupture. Additionally, free d-galacturonic acid was higher in pitted Sweetheart samples, likely indicating greater pectin degradation in this susceptible cultivar. Higher contents of the p-coumaric acid derivatives L-5-oxoproline and d-galactose in Sweetheart cherries were found. The metabolic changes during storage and cell wall composition could influence the susceptibility to surface pitting.
Asunto(s)
Pared Celular/metabolismo , Conservación de Alimentos , Prunus avium/metabolismo , Carbohidratos/análisis , Metabolómica , Fenoles/metabolismo , Propiedades de SuperficieRESUMEN
Mashua (Tropaeolum tuberosum) is an important food in certain areas of the Andean region, where it is popularly believed to possess medicinal properties. Several studies have previously shown the potential of this tuber as a source of bioactive compounds. Traditionally, the tuber is exposed to the sun before consumption, in order to reduce its bitterness. The present work aims to study, at the proteome level, the differential abundance of proteins in tubers subjected to different postharvest treatments: sun-exposure (SUN), shade (SHA), refrigeration (COLD) and shade combined with sun-exposure (SHA-SUN) compared to recently harvested tubers (INIT). Results showed that sun exposure for prolonged times (9â¯days) resulted in increased abundance of proteins classified as heat shock proteins, intracellular traffic, disease/defense and protein degradation. Our results reflect that the sun treatment activates defense systems and osmoprotection adjustment against water loss and reactive oxygen species.
Asunto(s)
Proteoma/análisis , Proteómica/métodos , Tropaeolum/metabolismo , Cromatografía Líquida de Alta Presión , Frío , Análisis Discriminante , Proteínas de Choque Térmico/metabolismo , Análisis de los Mínimos Cuadrados , Espectrometría de Masas , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Luz SolarRESUMEN
The Andes is considered the longest continental mountain range in the world. It covers 7000km long and about 200-700km wide and an average height of about 4000m. Very unique plant species are endemic of this area including fruits (e.g., lucuma, cherimoya, sweet pepino, sauco), roots and tubers (potatoes, sweet potatoes, yacón, chicuru, mashua, olluco, etc.), and seeds (quinoa, amaranth, tarwi, etc.). These crops have been used for centuries by the native population and relatively recently have gained the world attention due to the wide range of nutrients and/or phytochemicals they possess. In this chapter, main Andean fruits, seeds, and roots and tubers have been selected and detailed nutritional and functional information is provided. In addition, traditional and current uses are provided and their bioactive potential is reported based on published scientific literature.
Asunto(s)
Frutas , Tubérculos de la Planta , Plantas Comestibles , Plantas Medicinales , Semillas , Productos Agrícolas , Alimentos Funcionales , Humanos , Fitoquímicos , Raíces de Plantas , América del SurRESUMEN
Walnuts (Juglans regia L.) are well known for their flavour, nutritional and health properties. The light colour of walnuts is a quality attribute that leads to consumer preference. The aim of this study was to correlate attributes such as colour and antioxidant capacity with the precursors of primary and secondary metabolism. Two growing areas and four different colours of walnuts cv. Chandler from the central region of Chile were evaluated. Walnuts grown in the zone with Andes Mountains influence showed higher (p<0.05) sugar and unsaturated fatty acid contents, which could be attributed to lower minimum temperatures during seed filling. Extra light walnuts had higher (p<0.05) total phenolic compounds, antioxidant capacity and arbutin levels than amber walnuts. To the best of our knowledge, this is the first time that arbutin has been reported in walnuts and could provide the first insight into how enzymatic browning is prevented in the Chandler cultivar.
Asunto(s)
Color , Juglans , Chile , Nueces , Metabolismo SecundarioRESUMEN
Beneficial effects on overall gut health by phenolic bioactives-rich foods are potentially due to their modulation of probiotic gut bacteria and antimicrobial activity against pathogenic bacteria. Based on this rationale, the effect of the free and bound phenolic fractions from a Peruvian purple corn accession AREQ-084 on probiotic lactic acid bacteria such as Lactobacillus helveticus and Bifidobacterium longum and the gastric cancer-related pathogen Helicobacter pylori was evaluated. The free and bound phenolic composition was also determined by ultra-performance liquid chromatography. Anthocyanins were the major phenolic compounds (310.04 mg cyanidin-3-glucoside equivalents/100 g dry weight, DW) in the free phenolic fraction along with hydroxycinnamic acids such as p-coumaric acid derivatives, followed by caffeic and ferulic acid derivatives. The bound phenolic form had only hydroxycinnamic acids such as ferulic acid, p-coumaric acid, and a ferulic acid derivative with ferulic acid being the major phenolic compound (156.30 mg/100 g DW). These phenolic compounds were compatible with beneficial probiotic lactic acid bacteria such as L. helveticus and B. longum as these bacteria were not inhibited by the free and bound phenolic fractions at 10 to 50 mg/mL and 10 mg/mL of sample doses, respectively. However, the pathogenic H. pylori was also not inhibited by both purple corn phenolic forms at same above sample doses. This study provides the preliminary base for the characterization of phenolic compounds of Peruvian purple corn biodiversity and its potential health benefits relevant to improving human gut health. PRACTICAL APPLICATION: This study provides insights that Peruvian purple corn accession AREQ-084 can be targeted as a potential source of health-relevant phenolic compounds such as anthocyanins along with hydroxycinnamic acids linked to its dietary fiber fraction. Additionally, these phenolic fractions did not affect the gut health associated beneficial bacteria nor the pathogenic H. pylori. Purple corn can be targeted for design of probiotic functional foods integrated with their anthocyanin linked-coloring properties.
Asunto(s)
Antibacterianos/química , Fenoles/química , Extractos Vegetales/química , Zea mays/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Perú , Fenoles/farmacología , Extractos Vegetales/farmacologíaRESUMEN
Mashua (Tropaeolum tuberosum Ruíz and Pavón), an Andean tuber with high antioxidant activity, has sparked interest because of its traditional medicinal use. In this study, we evaluated the anthocyanin composition for three purple mashua genotypes and their contribution to the overall antioxidant activity of the tuber. Mashua anthocyanins, total phenolics, and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) antioxidant activity ranged from 45.5 to 131.9 mg of cyanidin 3-glucoside equivalents/100 g fresh weight (FW), 174.9 to 275.5 mg of gallic acid equivalents/100 g of FW, and 16.2 to 45.7 micromol of Trolox equivalents/g of FW, respectively. The high-performance liquid chromatography with photodiode array detection (HPLC-DAD) and HPLC-electrospray ionization tandem mass spectrometry (ESI/MS-MS) profiles revealed the presence of 11 different anthocyanins. The two major pigments (56.4-73.0% total area range at 520 nm) were identified as delphinidin 3-glucoside-5-acetylrhamnoside and delphinidin 3-sophoroside-5-acetylrhamnoside. Other pigments were delphinidin 3-glucoside-5-rhamnoside, delphinidin 3-sophoroside-5-rhamnoside, delphinidin 3-glucoside, cyanidin 3-sophoroside, and cyanidin 3-sophoroside-5-rhamnoside. Cyanidin 3-glucoside and cyanidin 3-rutinoside were only found in two genotypes, while pelargonidin 3-sophoroside and pelargonidin 3-sophoroside-5-rhamnoside were only found in the third one. Anthocyanins from mashua were the major contributors to the total ABTS values for only one of the three genotypes, suggesting that other phenolics present are playing a major role in the antioxidant power of mashua tubers. Results from this study provide important information for the Nutraceutical and Functional Food Market for the use of mashua anthocyanins not only as a source of natural colorants but also as a source of phytonutrients.
Asunto(s)
Antocianinas/análisis , Antioxidantes/análisis , Cromatografía Líquida de Alta Presión/métodos , Magnoliopsida/química , Tubérculos de la Planta/química , Espectrometría de Masa por Ionización de Electrospray , PerúRESUMEN
Pouteria lucuma is an Andean fruit from pre-Incas' times highly appreciated due to its characteristic flavor and taste in its homeland. We characterized the primary (e.g., sugars and organic acids), and secondary (e.g., phenolics and carotenoids) and in vitro antioxidant and antihyperglycemic properties of Rosalia, Montero and Leiva 1 lucuma biotypes. Significant differences were found in these metabolites and functional properties related to biotype and ripeness stage. Results showed significant amounts of sugars (119.4-344 mg total sugars g(-1)DW) and organic acids (44.4-30.0 mg g(-1)DW) and functional associated compounds such as ascorbic acid (0.35-1.07 mg g(-1)DW), total phenolics (0.7-61.6 mg GAE g(-1)DW) and total carotenoids (0.22-0.50 mg ß-carotene g(-1)DW). Important in vitro antioxidant and antihyperglycemic properties were found and provide the base for the standardization of lucuma harvest and postharvest focused not only on the enhancement of sensory but functional properties.
Asunto(s)
Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Pouteria/metabolismo , Carotenoides/análisis , Frutas/química , Fenoles/análisis , Pouteria/química , alfa-Amilasas/antagonistas & inhibidoresRESUMEN
A physico-chemical and phytochemical characterisation of the oil of two rich sources of polyunsaturated fatty acids, tocopherols and phytosterols is presented for two close species of Plukenetia, endemic to the Amazon Region of Peru. Plukenetia huayllabambana presented approximately 9% more oil yield than Plukenetia volubilis. Fatty acid profiles were pretty similar for both species but P. huayllabambana presented a significantly higher content of α-linolenic acid than P. volubilis (51.3 and 45.6 g/100 g oil, respectively). Important contents of γ- and δ-tocopherol were evidenced in both oils (127.6 and 84.0 and, 93.3 and 47.5 mg/100 g oil, for P. volubilis and P. huayllabambana, respectively). ß-Sitosterol was the most important and representative phytosterol in both oils (â¼127 mg/100 g oil). The results of this study indicate P. huayllabambana as an important dietary source of health promoting phytochemicals.
Asunto(s)
Euphorbiaceae/química , Euphorbiaceae/clasificación , Fitoquímicos/análisis , Aceites de Plantas/química , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-6/análisis , Perú , Sitoesteroles/análisis , Tocoferoles/análisis , Ácido alfa-Linolénico/análisisRESUMEN
The ability of three known probiotic strains (two lactobacilli and one bifidobacterium) to ferment fructooligosaccharides (FOS) from yacon roots (Smallanthus sonchifolius Poepp. Endl) was compared to commercial FOS in this study. Results indicate that Lactobacillus acidophilus NRRL-1910, Lactobacillus plantarum NRRL B-4496, and Bifidobacterium bifidum ATCC 15696 were able to ferment yacon root FOS. FOS consumption apparently depended on the degree of polymerization and the initial FOS composition. L. plantarum NRRL B-4496 and L. acidophilus NRRL B-1910 completely utilized 1-kestose molecules, while B. bifidum was able to utilize 1-kestose molecules as well as molecules with a higher degree of polymerization.
Asunto(s)
Asteraceae/química , Oligosacáridos/metabolismo , Raíces de Plantas/química , Probióticos/metabolismo , Bifidobacterium/metabolismo , Cromatografía en Gel , Fermentación , Lactobacillus/metabolismo , Lactobacillus acidophilus/metabolismoRESUMEN
Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were ß-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of ß-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 µmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals.
Asunto(s)
Antioxidantes/análisis , Euphorbiaceae/química , Ácidos Grasos Insaturados/análisis , Fenoles/análisis , Fitosteroles/análisis , Tocoferoles/análisis , Euphorbiaceae/clasificación , Aceites de Plantas/química , Semillas/químicaRESUMEN
Thirty-five different yacon (Smallanthus sonchifolius Poepp. & Endl) accessions were evaluated as potential alternative sources of fructooligosaccharides (FOS) and phenolic type natural antioxidants. FOS, total phenolics (TPC) and antioxidant capacity (AC) contents in the ranges of 6.4-65g/100g of dry mater (DM), 7.9-30.8mg chlorogenic acid (CAE)/g of DM and 23-136µmol trolox equivalente (TE)/g DM were found. Accession AJC 5189 sparked attention for its high FOS content while DPA 07011 for its high TPC and AC. In addition, the prebiotic effect of yacon FOS was tested in vivo with a guinea pig model. A diet rich in yacon FOS promoted the growth of bifidobacteria and lactobacilli, resulting in high levels of short chain fatty acids (SCFAs) in the cecal material and enhancement of cell density and crypt formation in caecum tissue, being indicative of colon health benefits. This study allowed identification of yacon cultivars rich in FOS, AC and/or FOS and AC for nutraceutical applications.