RESUMEN
CyVerse, the largest publicly-funded open-source research cyberinfrastructure for life sciences, has played a crucial role in advancing data-driven research since the 2010s. As the technology landscape evolved with the emergence of cloud computing platforms, machine learning and artificial intelligence (AI) applications, CyVerse has enabled access by providing interfaces, Software as a Service (SaaS), and cloud-native Infrastructure as Code (IaC) to leverage new technologies. CyVerse services enable researchers to integrate institutional and private computational resources, custom software, perform analyses, and publish data in accordance with open science principles. Over the past 13 years, CyVerse has registered more than 124,000 verified accounts from 160 countries and was used for over 1,600 peer-reviewed publications. Since 2011, 45,000 students and researchers have been trained to use CyVerse. The platform has been replicated and deployed in three countries outside the US, with additional private deployments on commercial clouds for US government agencies and multinational corporations. In this manuscript, we present a strategic blueprint for creating and managing SaaS cyberinfrastructure and IaC as free and open-source software.
Asunto(s)
Inteligencia Artificial , Programas Informáticos , Humanos , Nube Computacional , EdiciónRESUMEN
Many animal societies are susceptible to mass mortality events and collapse. Elucidating how environmental pressures determine patterns of collapse is important for understanding how such societies function and evolve. Using the social spider Stegodyphus dumicola, we investigated the environmental drivers of colony extinction along two precipitation gradients across southern Africa, using the Namib and Kalahari deserts versus wetter savanna habitats to the north and east. We deployed experimental colonies (n = 242) along two ~ 800-km transects and returned to assess colony success in the field after 2 months. Specifically, we noted colony extinction events after the 2-month duration and collected environmental data on the correlates of those extinction events (e.g., evidence of ant attacks, no. of prey captured). We found that colony extinction events at desert sites were more frequently associated with attacks by predatory ants as compared with savanna sites, while colony extinctions in wetter savannas sites were more tightly associated with fungal outbreaks. Our findings support the hypothesis that environments vary in the selection pressures that they impose on social organisms, which may explain why different social phenotypes are often favored in each habitat.