Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256052

RESUMEN

Breast cancer stands out as the most widespread form of cancer globally. In this study, the anticancer activities of Clerodendrum chinense (C. chinense) stem ethanolic extract were investigated. High-performance liquid chromatography (HPLC) analysis identified verbascoside and isoverbascoside as the major bioactive compounds in the C. chinense stem extract. Successfully developed nanoparticles exhibited favorable hydrodynamic diameter, polydispersity index, and surface charge, thus ensuring stability after four months of storage. The total phenolic content and total flavonoid contents in the nanoparticles were reported as 88.62% and 95.26%, respectively. The C. chinense stem extract demonstrated a dose-dependent inhibitory effect on MCF-7, HeLa, A549, and SKOV-3 cancer cell lines, with IC50 values of 109.2, 155.6, 206.9, and 423 µg/mL, respectively. C. chinense extract and NPs exhibited dose-dependent cytotoxicity and the highest selectivity index values against MCF-7 cells. A dose-dependent reduction in the colony formation of MCF-7 cells was observed following treatment with the extract and nanoparticles. The extract induced cytotoxicity in MCF-7 cells through apoptosis and necrosis. C. chinense stem extract and nanoparticles decreased mitochondrial membrane potential (MMP) and induced G0/G1 phase arrest in MCF-7 cells. In conclusion, use of C. chinense stem extract and nanoparticles may serve as a potential therapeutic approach for breast cancer, thus warranting further exploration.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Clerodendrum , Humanos , Femenino , Potencial de la Membrana Mitocondrial , Neoplasias de la Mama/tratamiento farmacológico , Apoptosis , Puntos de Control del Ciclo Celular , Células HeLa , Proliferación Celular , Extractos Vegetales/farmacología
2.
Prep Biochem Biotechnol ; : 1-10, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747818

RESUMEN

Coffee pulp (CP), a by-product of coffee production, is an underutilized resource with significant potential value. CP contains monosaccharides that can serve as an ideal carbon source for bacterial cultivation, enabling the production of value-added components such as medical-grade cellulose. Herein, we extracted the sugar fraction from Arabica CP and used it as a supplement in a growing media of a bacteria cellulose (BC), Komagataeibacter nataicola. The BC was then characterized and tested for cytotoxicity. The CP sugar fraction yielded approximately 7% (w/w) and contained glucose at 4.52 mg/g extract and fructose at 7.34 mg/g extract. Supplementing the sugar fraction at different concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) in sterilized glucose yeast extract broth, the highest yield of cellulose (0.0020 g) occurred at 0.3 g/10 mL. It possessed similar physicochemical attributes to the BC using glucose, with some notable improvements in fine structure and arrangement of the functional groups. In cytotoxicity assessments on HaCaT keratinocyte cells, bacterial cellulose concentrations of 2-1000 µg/mL exhibited viability of ≥ 80%. However, higher concentrations were toxic. This research innovatively uses coffee pulp for bacterial cellulose, aligning with the principles of a bio-circular economy that focuses on sustainable biomass utilization.


The sugar fraction of Arabica CP (6.64 g/100 g sample) contained glucose and fructose of 4.52 and 7.34 mg/g extract respectively.Different sugar fraction concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) were tested in sterilized glucose yeast extract broth. Optimal BC yield (0.0020 g) was achieved at 0.3 g/10 mL.The BC exhibited comparable physicochemical characteristics to cellulose obtained from glucose.The cytotoxicity indicate that HaCaT cells exposed to 2­1000 µg/mL of BC had a percentage cell viability of ≥80%, but it was toxic at higher concentrations.CP represents a cheap and readily-available source for BC production, contributing to the bio-circular economic goal.

3.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630617

RESUMEN

L-dopa, a dopaminergic agonist, is the gold standard for the treatment of Parkinson's disease. However, due to the long-term toxicity and adverse effects of using L-dopa as the first-line therapy for Parkinson's disease, a search for alternative medications is an important current challenge. Traditional Ayurvedic medicine has suggested the use of Mucuna pruriens Linn. (Fabaceae) as an anti-Parkinson's agent. The present study aimed to quantify the amount of L-dopa in M. pruriens seed extract by HPLC analysis. The cytotoxicity and neuroprotective properties of M. pruriens aqueous extract were investigated by two in vitro models including the serum deprivation method and co-administration of hydrogen peroxide assay. The results showed the significant neuroprotective activities of M. pruriens seed extracts at a concentration of 10 ng/mL. In addition, the effects of L-dopa and M. pruriens seed extract on in vitro acetylcholinesterase activities were studied. M. pruriens seed extract demonstrated acetylcholinesterase inhibitory activity, while synthetic L-dopa enhanced the activity of the enzyme. It can be concluded that the administration of M. pruriens seed might be effective in protecting the brain against neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. M. prurience seed extract containing L-dopa has shown less acetylcholinesterase activity stimulation compared with L-dopa, suggesting that the extract might have a superior benefit for use in the treatment of Parkinson's disease.


Asunto(s)
Mucuna , Enfermedad de Parkinson , Acetilcolinesterasa/uso terapéutico , Levodopa/análisis , Enfermedad de Parkinson/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Semillas/química , Agua
4.
Molecules ; 27(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163900

RESUMEN

Proliferation and migration of keratinocytes and fibroblasts play an important role in cutaneous wound healing, while oral mucosal squamous cell proliferation and migration are crucial for oral wound healing. In this study, the phytochemical profile of Pluchea indica branch ethanolic extract was characterized. The bioactive compound of Pluchea indica branch ethanolic extract was identified and analyzed by the validated HPLC method. The nanoparticles of P. indica branch extract were formulated by solvent displacement method to increase the solubility and the colloidal stability of the extract. The stability of the nanoparticles was investigated by using the dynamic light scattering technique. Effects of P. indica crude extract and nanoparticles on cell viability, proliferation and migration of primary epidermal keratinocytes, human dermal fibroblasts, and oral mucosal keratinocyte cells were investigated by MTT assay and scratch assay, respectively. The results showed that P. indica branch extract contained a high content of total phenolic and total flavonoids. The HPLC analysis revealed that the main compound in the extract was 4,5-O-dicaffeoylquinic acid. The cell viability of the extract and nanoparticles decreased when cells were exposed to a high concentration of extract and nanoparticles. These results demonstrate that P. indica branch extract and extract nanoparticles at specific concentrations possess in vitro wound healing activity and they may be possibly used to treat different types of wounds including dermal and oral mucosal wounds.


Asunto(s)
Antioxidantes , Nanopartículas , Antioxidantes/farmacología , Humanos , Queratinocitos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Cicatrización de Heridas
5.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630777

RESUMEN

Phytocannabinoids are isoprenylated resorcinyl polyketides produced mostly in glandular trichomes of Cannabis sativa L. These discoveries led to the identification of cannabinoid receptors, which modulate psychotropic and pharmacological reactions and are found primarily in the human central nervous system. As a result of the biogenetic process, aliphatic ketide phytocannabinoids are exclusively found in the cannabis species and have a limited natural distribution, whereas phenethyl-type phytocannabinoids are present in higher plants, liverworts, and fungi. The development of cannabinomics has uncovered evidence of new sources containing various phytocannabinoid derivatives. Phytocannabinoids have been isolated as artifacts from their carboxylated forms (pre-cannabinoids or acidic cannabinoids) from plant sources. In this review, the overview of the phytocannabinoid biosynthesis is presented. Different non-cannabis plant sources are described either from those belonging to the angiosperm species and bryophytes, together with their metabolomic structures. Lastly, we discuss the legal framework for the ingestion of these biological materials which currently receive the attention as a legal high.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Agonistas de Receptores de Cannabinoides , Cannabinoides/química , Cannabis/química , Humanos , Espectrometría de Masas , Metabolómica
6.
Molecules ; 27(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35268636

RESUMEN

Oily skin from overactive sebaceous glands affects self-confidence and personality. There is report of an association between steroid 5-alpha reductase gene (SRD5A) expression and facial sebum production. There is no study of the effect of Asparagus racemosus Willd. root extract on the regulation of SRD5A mRNA expression and anti-sebum efficacy. This study extracted A. racemosus using the supercritical carbon dioxide fluid technique with ethanol and investigated its biological compounds and activities. The A. racemosus root extract had a high content of polyphenolic compounds, including quercetin, naringenin, and p-coumaric acid, and DPPH scavenging activity comparable to that of the standard L-ascorbic acid. A. racemosus root extract showed not only a significant reduction in SRD5A1 and SRD5A2 mRNA expression by about 45.45% and 90.86%, respectively, but also a reduction in the in vivo anti-sebum efficacy in male volunteers, with significantly superior percentage changes in facial sebum production and a reduction in the percentages of pore area after 15 and 30 days of treatment. It can be concluded that A. racemosus root extract with a high content of polyphenol compounds, great antioxidant effects, promising downregulation of SRD5A1 and SRD5A2, and predominant facial sebum reduction and pore-minimizing efficacy could be a candidate for an anti-sebum and pore-minimizing active ingredient to serve in functional cosmetic applications.


Asunto(s)
Asparagus , Dióxido de Carbono , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Asparagus/química , Dióxido de Carbono/metabolismo , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sebo
7.
Bioorg Chem ; 107: 104601, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33476870

RESUMEN

Acute lymphoblastic leukemia (ALL) or white blood cell cancer is one of the major causes that kills many children worldwide. Although various therapeutic agents are available for ALL treatment, the new drug discovery and drug delivery system are needed to improve their effectiveness, to reduce the toxicity and side-effect, and to enhance their selectivity to target cancer cells. CXCR4 is a protein expressed on the surface of various types of cancer cell including ALL. In this work, the CXCR4-targeted PAMAM dendrimer was constructed by conjugating G5 PAMAM with a CXCR4 antagonist, LFC131. The results revealed that the LFC131-conjugated G5 PAMAM selectively targeted CXCR4 expressing leukemic precursor B cells (NALM-6) and the migration of NALM-6 cells induced by SDF-1α was inhibited at non-cytotoxic concentration. Further research based on this findings may contribute to potential anti-metastatic drugs for lymphoblastic leukemia.


Asunto(s)
Antineoplásicos/farmacología , Dendrímeros/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dendrímeros/síntesis química , Dendrímeros/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Receptores CXCR4/antagonistas & inhibidores , Relación Estructura-Actividad , Células Tumorales Cultivadas
8.
Clin Exp Pharmacol Physiol ; 48(3): 318-328, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33125766

RESUMEN

Atractylodes lancea (Thunb) DC. and its bioactive compound atractylodin (ATD), have been shown to exert promising anticancer activity against cholangiocarcinoma (CCA) both in vitro and in vivo. However, the clinical development of ATD could be hindered due to hydrophobicity and poor pharmacokinetic properties, and thus, the requirement of high dose administration and the risk of toxicity. In the present study, ATD-loaded in PLGA nanoparticles (ATD-PLGA) and that coated with chitosan (ATD-PLGA-CS) were developed using nanoprecipitation and single emulsification methods, respectively. The optimized ATD-PLGA formulation provided superior physical and pharmaceutical properties over ATD-PLGA-CS. The antiproliferative activity of ATD-PLGA against the two CCA cell lines, HuCCT1 and CL6, and the normal cell line (OUMS-36T-1F) was evaluated using MTT assay. Results showed that normal epithelial cell was less sensitive to ATD-PLGA compared to both CCA cell lines. In mice, the radiolabelled 99m Tc-ATD-PLGA showed superior pharmacokinetic profile over free 99m Tc-ATD, as evidenced by a 2.7-fold increase of area under plasma concentration-time curve (AUC0-∞ ), maximum plasma concentration (Cmax ), time to Cmax (tmax ), and mean residence time (MRT). Higher accumulation of 99m Tc-ATD-PLGA was observed in vital organs/tissues such as blood, liver, heart, and kidney, compared with free 99m Tc-ATD-PLGA. Altogether, the results suggest that PLGA NPs could be a suitable drug delivery carrier for ATD in CCA.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Animales , Disponibilidad Biológica , Línea Celular Tumoral , Quitosano , Ácido Láctico , Ratones , Distribución Tisular
9.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008566

RESUMEN

Wound healing impairment due to a postponed, incomplete, or uncoordinated healing process has been a challenging clinical problem. Much research has focused on wound care, particularly on discovery of new therapeutic approaches for acute and chronic wounds. This study aims to evaluate the effect of the combination of quercetin and curcuminoids at three different ratios on the antimicrobial, antioxidant, cell migration and wound healing properties. The antioxidant activities of quercetin, curcuminoids and the mixtures were tested by DPPH and ABTS free radical scavenging assays. The disc diffusion method was performed to determine the antibacterial activities of quercetin, curcuminoids and the mixtures against S. aureus and P. aeruginosa. The cytotoxicity and cell migratory enhancing effects of quercetin, curcuminoids and the mixtures against human dermal fibroblasts were investigated by MTT assay, scratch assay and Transwell migration assay, respectively. The results showed the synergism of the quercetin and curcuminoid combination to inhibit the growth of S. aureus and P. aeruginosa, with the inhibition zone ranging from 7.06 ± 0.25 to 8.78 ± 0.38 mm, respectively. The DPPH free radical scavenging assay demonstrated that the combination of quercetin and curcuminoids yielded lower IC50 values (15.38-23.70 µg/mL) than curcuminoids alone (25.75 µg/mL). Quercetin and a 3:1 quercetin/curcuminoid mixture at non-toxic concentrations showed the ability to stimulate the migration of fibroblasts across the matrix, whereas only quercetin alone accelerated the wound closure of fibroblasts. In conclusion, the mixture of quercetin and curcuminoids at a 3:1 ratio was the best formulations for use in wound healing due to the antimicrobial, antioxidant and cell-migration-enhancing activities.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Movimiento Celular/efectos de los fármacos , Curcumina/farmacología , Fibroblastos/efectos de los fármacos , Quercetina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Células Cultivadas , Humanos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
10.
Molecules ; 25(24)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302574

RESUMEN

Terpenes are the primary constituents of essential oils and are responsible for the aroma characteristics of cannabis. Together with the cannabinoids, terpenes illustrate synergic and/or entourage effect and their interactions have only been speculated in for the last few decades. Hundreds of terpenes are identified that allude to cannabis sensory attributes, contributing largely to the consumer's experiences and market price. They also enhance many therapeutic benefits, especially as aromatherapy. To shed light on the importance of terpenes in the cannabis industry, the purpose of this review is to morphologically describe sources of cannabis terpenes and to explain the biosynthesis and diversity of terpene profiles in different cannabis chemovars.


Asunto(s)
Cannabis/química , Terpenos/química , Vías Biosintéticas , Cannabinoides/química , Cannabinoides/clasificación , Cannabis/metabolismo , Aceites Volátiles/química , Fenotipo , Terpenos/clasificación , Terpenos/aislamiento & purificación , Terpenos/metabolismo , Compuestos Orgánicos Volátiles/química
11.
AAPS PharmSciTech ; 21(3): 74, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965399

RESUMEN

Neovascular age-related macular degeneration (AMD) is a leading cause of central vision loss and irreversible blindness. Vascular endothelial growth factor (VEGF) plays an important role in neovascularization under the retina and macula by promoting endothelial cell proliferation, migration, and angiogenesis. Although anti-VEGF drugs have shown their efficacy in visual improvement, long-term use of these drugs leads to ocular and systemic complications due to the non-selectivity of the drug. In this study, the dual-mode anti-angiogenic drug delivery system, which potentially inhibited VEGF in two different ways, was developed. The itraconazole encapsulated nanoparticles, conjugated with R5K peptide, were fabricated to allow multivalent binding interactions with VEGF. The R5K peptide blocked VEGF binding to its receptor, while itraconazole altered the signaling pathway of VEGF stimulation. The dual action of this novel drug delivery system aimed to enhance the anti-angiogenic effects of individual drugs. R5K-ITZ-NPs demonstrated potent, cell-type specific, and dose-dependent inhibition of vascular endothelial cell proliferation, migration, and tube formation in response to VEGF stimulation. The physical stability study showed that R5K-ITZ-NPs were stable when stored at 4 °C. However, the drug remaining in R5K-ITZ-NPs when stored at 4 °C for 28 days were only 17.2%. The chemical stability test revealed that the degradation of R5K-ITZ-NPs followed second-order kinetics. The release profile showed the burst release of ITZ followed by sustained release of the drug This novel drug delivery system may be an option for neovascular AMD patients who are resistant to ITZ and may represent a novel therapy for AMD.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Itraconazol/administración & dosificación , Nanopartículas , Fragmentos de Péptidos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Inhibidores del Citocromo P-450 CYP3A/administración & dosificación , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Agudeza Visual/efectos de los fármacos , Agudeza Visual/fisiología , Degeneración Macular Húmeda/tratamiento farmacológico , Degeneración Macular Húmeda/metabolismo
12.
Saudi Pharm J ; 28(12): 1538-1547, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33424247

RESUMEN

The aim of this study was to develop hydrogel loaded with capsicum extract nanoparticles and wax gourd extract for transdermal delivery of capsaicin. The addition of wax gourd extract was supposed to reduce cytotoxicity of capsaicin in capsicum extract against HaCaT keratinocyte cell line. Capsicum extract nanoparticles were prepared by solvent displacement method using hyaluronic acid as a stabilizer. The physical and chemical stability of capsicum extract nanoparticles were investigated by dynamic light scattering technique and UV-Visible spectrophotometry, respectively. Hydrogel loaded with capsicum extract nanoparticles and wax gourd fruit extract was then formulated by using Carbopol 940® as a gelling agent for transdermal delivery. The skin permeability of capsaicin from the hydrogel was evaluated by Franz diffusion cell approach. The cytotoxicity reduction of capsicum extract nanoparticles and capsicum extract nanoparticles by mixing with wax gourd extract was determined by MTT assay The results showed that capsicum extract nanoparticles exhibited an average diameter of 168.4 ± 5.3 nm with a polydispersity index and zeta potential value of 0.26 ± 0.01 and -45.7 ± 7.1 mV, respectively. After two month-storage, particle size, polydispersity index, and zeta potential values of capsicum extract nanoparticles stored at 4° C, 30° C, and 45 °C did not significantly change. The capsaicin content decreased to 78%, 71%, and 72% when stored at 4 °C, 30 °C, and 45 °C for three months, respectively. The pH values of hydrogel containing capsicum extract nanoparticles were found to be in the range of 5.58-6.05 indicating good stability. The hydrogel exhibited a pseudoplastic character. The rate of permeation flux of capsaicin from hydrogel was 7.96 µg/cm2/h. A significant increase in cell viability was observed when the cells were incubated with capsicum extract nanoparticles mixed with wax gourd, compared to capsicum extract nanoparticles alone. The wax gourd extract in the hydrogel protected HaCaT cells from capsaicin cytotoxicity, thus may provide a new approach for delivery of capsaicin to reduce cytotoxicity to skin cells.

13.
AAPS PharmSciTech ; 20(1): 4, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30560323

RESUMEN

The application of lutein was limited due to water insolubility and susceptible to heat and light degradation. In this study, hyaluronic acid (HA)-coated PLGA nanoparticles encapsulating lutein were fabricated by a solvent displacement method to improve the physicochemical properties and the stability of lutein. A biphasic release profile of lutein was observed, following zero-order release kinetics. The physical stability of lutein stored at 4°C, 30°C, and 40°C for 30 days was enhanced when lutein was encapsulated in the nanoparticles. The degradation of lutein in PLGA NPs coated with HA was fitted to a second-order kinetic model. The rate constant increased with increasing storage temperature. The activation energy of lutein-NPs was 63.26 kJ/mol. The half-lives of lutein in PLGA-NPs were about 49, 4, and 2 days at a storage temperature of 4°C, 30°C, and 40°C, respectively. The results suggested that lutein-NPs should be stored at 4°C to prevent physical and chemical degradation. The photodegradation of lutein in NPs followed a second-order kinetic model. The rate constant was 0.0155 mg-1 ml day-1. Cell viability study revealed that HA-coated PLGA nanoparticles encapsulating lutein did not show toxicity against retinal pigment epithelial cells (ARPE-19). The NPs bound ARPE-19 cells in a time- and a dose-dependent manner. The binding efficiency of lutein-NPs decreased at higher concentrations, suggesting that the NPs might reach binding saturation capacity. In conclusion, HA-coated PLGA nanoparticles could be used to deliver lutein and improved physicochemical property of lutein. Graphical abstract ᅟ.


Asunto(s)
Luteína/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Epitelio Pigmentado de la Retina/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Estabilidad de Medicamentos , Células Epiteliales/metabolismo , Humanos , Ácido Hialurónico/química , Luteína/administración & dosificación , Luteína/metabolismo , Luteína/farmacología , Nanopartículas/química
14.
Pharm Biol ; 55(1): 1767-1774, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28534695

RESUMEN

CONTEXT: Pluchea indica (L.) Less (Asteraceae) is an herb used as a traditional medicine for wound healing. The chemical compounds found in Pluchea indica leaves are phenolic acids, flavonoids, anthocyanins and carotenoids. OBJECTIVE: This study investigates the effect of Pluchea indica leaf ethanol extract and its nanoparticles (NPs) on cytotoxicity, cell survival and migration of human oral squamous carcinoma cell line. MATERIALS AND METHODS: Cell viability was measured using MTT assay to assess the effect of Pluchea indica leaf extract and NPs (1-500 µg/mL) on cytotoxicity and cell survival. The effect of Pluchea indica leaf extract and NPs on cell migration was determined by scratch assay. The % relative migration was calculated after 24, 48 and 72 h of treatment. RESULTS: The sizes of Pluchea indica leaf extract NPs were in a range of nanometers. NPs possessed negative charge with the polydispersity index (PDI) smaller than 0.3. After the treatment for 24, 48 and 72 h, Pluchea indica leaf extract had IC50 value of 443.2, 350.9 and 580.5 µg/mL, respectively, whereas the IC50 value of NPs after the treatment for 24, 48 and 72 h were 177.4, 149.2 and 185.1 µg/mL, respectively. The % relative migration of cells was significantly increased when the cells were treated with 62.5 and 125 µg/mL of the extract and 62.5 µg/mL of NPs. DISCUSSION AND CONCLUSIONS: NPs increased cytotoxicity of the Pluchea indica leaf extract, increased the migration of cells at low concentration and increased colloidal stability of the extract in an oral spray formulation.


Asunto(s)
Asteraceae/química , Mucosa Bucal/efectos de los fármacos , Nanopartículas , Extractos Vegetales/farmacología , Hojas de la Planta/química , Estomatitis/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Aerosoles , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Composición de Medicamentos , Estabilidad de Medicamentos , Etanol/química , Humanos , Concentración 50 Inhibidora , Mucosa Bucal/patología , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Solventes/química , Estomatitis/patología , Factores de Tiempo
15.
Mol Pharm ; 11(1): 367-73, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24283935

RESUMEN

A novel oxime grafting scheme was utilized to conjugate an ICAM-1 ligand (LABL), a cellular antigen ovalbumin (OVA), or both peptides simultaneously to hyaluronic acid (HA). Samples of HA only and the various peptide grafted HA were found to bind to dendritic cells (DCs). HA with grafted LABL and OVA showed the greatest binding to DCs. Dendritic cells treated with HA, HA with grafted LABL, or HA with grafted LABL and OVA significantly suppressed T cell and DC conjugate formation and T cell proliferation and reduced proinflammatory cytokine production compared to untreated cells. These results suggest that HA serves as an effective backbone for multivalent ligand presentation for inhibiting T cell response to antigen presentation. In addition, multivalent display of both antigen and an ICAM-1 inhibitor (LABL) may enhance binding to DCs and could potentially disrupt cellular signaling leading to autoimmunity.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Dendríticas/inmunología , Ácido Hialurónico/metabolismo , Molécula 1 de Adhesión Intercelular/química , Ovalbúmina/metabolismo , Fragmentos de Péptidos/metabolismo , Polímeros/metabolismo , Animales , Células Presentadoras de Antígenos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Técnicas In Vitro , Molécula 1 de Adhesión Intercelular/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Polímeros/química , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
16.
Polymers (Basel) ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611175

RESUMEN

Curcumin loaded in micelles of block copolymers of ω-methoxypoly(ethylene glycol) and N-(2-hydroxypropyl) methacrylamide modified with aliphatic dilactate (CD) or aromatic benzoyl group (CN) were previously reported to inhibit human ovarian carcinoma (OVCAR-3), human colorectal adenocarcinoma (Caco-2), and human lymphoblastic leukemia (Molt-4) cells. Myeloblastic leukemia cells (K562) are prone to drug resistance and differ in both cancer genotype and phenotype from the three mentioned cancer cells. In the present study, CD and CN micelles were prepared and their effects on K562 and normal cells were explored. The obtained CD and CN showed a narrow size distribution with diameters of 63 ± 3 and 50 ± 1 nm, respectively. The curcumin entrapment efficiency of CD and CN was similarly high, above 80% (84 ± 8% and 91 ± 3%). Both CD and CN showed suppression on WT1-expressing K562 and high cell-cycle arrest at the G2/M phase. However, CD showed significantly higher cytotoxicity to K562, with faster cellular uptake and internalization than CN. In addition, CD showed better compatibility with normal red blood cells and peripheral blood mononuclear cells than CN. The promising CD will be further investigated in rodents and possibly in clinical studies for leukemia treatment.

17.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543115

RESUMEN

In recent years, due to their distinctive and adaptable therapeutic effects, many natural bioactive compounds have been commonly used to treat diseases. Their limited solubility, low bioavailability, inadequate gastrointestinal tract stability, high metabolic rate, and shorter duration of action limited their pharmaceutical applications. However, those can be improved using nanotechnology to create various drug delivery systems, including lipid-based nanoparticles, to adjust the compounds' physicochemical properties and pharmacokinetic profile. Because of the enormous technical advancements made in the fundamental sciences and the physical and chemical manipulation of individual atoms and molecules, the subject of nanotechnology has experienced revolutionary growth. By fabricating certain functionalized particles, nanotechnology opens an innovative horizon in research and development for overcoming restrictions, including traditional medication administration systems. Nanotechnology-driven bioactive compounds are certain to have a high impact and clinical value for current and future uses. Lipid-based nanotechnologies were shown to deliver a range of naturally occurring bioactive compounds with decent entrapment potential and stability, a successfully controlled release, increased bioavailability, and intriguing therapeutic activity. This review outlines bioactive compounds such as paclitaxel, curcumin, rhodomyrtone, quercetin, kaempferol, resveratrol, epigallocatechin-3-gallate, silymarin, and oridonin, fortified within either a natural or synthetic lipid-based drug delivery system based on nanotechnology and their evaluation and clinical considerations.

18.
Int J Biol Macromol ; 258(Pt 2): 129071, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159707

RESUMEN

Vesicle delivery carriers, used to stabilize hydrophobic drugs, are characterized by the propensity to aggregate, and fuse, limiting its applications. Fortifying vesicle-entrapped drugs within a biodegradable polymeric film constitutes a promising solution. In this study, biodegradable poly (vinyl alcohol) copolymerized with gelatin-sericin film and integrated alongside vesicle-entrapped demethoxycurcumin (DMC) or bisdemethoxycurcumin (BDMC) was developed, extensively characterized for improve efficacy, and compared. Vesicle-entrapped DMC or BDMC was spherical in shape with no changes in size, zeta-potential, and morphology after storing at 4 °C for 30 days. Antibacterial activity of vesicle-entrapped DMC formulations against Acinetobacter baumannii and Staphylococcus epidermidis was more effective than that of its free form. DMC and BDMC demonstrated dose dependent reduction in lipopolysaccharides (LPS)-induced nitric oxide (NO) levels either in free or in entrapped form. Moreover, vesicle-entrapped DMC/BDMC suppressed NO production at lower concentrations, compared with that of their free form and significantly improved the viability of RAW264.7 and HaCaT cells. Furthermore, functionalized film with vesicle-entrapped DMC/BDMC demonstrated excellent radical scavenging, biocompatibility, and cell migration efficacy. Thus, incorporating vesicle, entrapped DMC/BDMC within biodegradable polymeric film may comprised a promising strategy for improving stability, wound healing, and inflammation attenuation efficacy.


Asunto(s)
Curcumina , Diarilheptanoides , Sericinas , Curcumina/química , Gelatina , Etanol , Cicatrización de Heridas , Antiinflamatorios
19.
Pharmaceutics ; 16(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38931873

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2, poses a significant global health threat. The spike glycoprotein S1 of the SARS-CoV-2 virus is known to induce the production of pro-inflammatory mediators, contributing to hyperinflammation in COVID-19 patients. Triphala, an ancient Ayurvedic remedy composed of dried fruits from three plant species-Emblica officinalis (Family Euphorbiaceae), Terminalia bellerica (Family Combretaceae), and Terminalia chebula (Family Combretaceae)-shows promise in addressing inflammation. However, the limited water solubility of its ethanolic extract impedes its bioavailability. In this study, we aimed to develop nanoparticles loaded with Triphala extract, termed "nanotriphala", as a drug delivery system. Additionally, we investigated the in vitro anti-inflammatory properties of nanotriphala and its major compounds, namely gallic acid, chebulagic acid, and chebulinic acid, in lung epithelial cells (A549) induced by CoV2-SP. The nanotriphala formulation was prepared using the solvent displacement method. The encapsulation efficiency of Triphala in nanotriphala was determined to be 87.96 ± 2.60% based on total phenolic content. In terms of in vitro release, nanotriphala exhibited a biphasic release profile with zero-order kinetics over 0-8 h. A549 cells were treated with nanotriphala or its active compounds and then induced with 100 ng/mL of spike S1 subunit (CoV2-SP). The results demonstrate that chebulagic acid and chebulinic acid are the active compounds in nanotriphala, which significantly reduced cytokine release (IL-6, IL-1ß, and IL-18) and suppressed the expression of inflammatory genes (IL-6, IL-1ß, IL-18, and NLRP3) (p < 0.05). Mechanistically, nanotriphala and its active compounds notably attenuated the expression of inflammasome machinery proteins (NLRP3, ASC, and Caspase-1) (p < 0.05). In conclusion, the nanoparticle formulation of Triphala enhances its stability and exhibits anti-inflammatory properties against CoV2-SP-induction. This was achieved by suppressing inflammatory mediators and the NLRP3 inflammasome machinery. Thus, nanotriphala holds promise as a supportive preventive anti-inflammatory therapy for COVID-19-related chronic inflammation.

20.
Pharmaceutics ; 15(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36986636

RESUMEN

Cancer develops with unexpected mutations and causes death in many patients. Among the different cancer treatment strategies, immunotherapy is promising with the benefits of high specificity and accuracy, as well as modulating immune responses. Nanomaterials can be used to formulate drug delivery carriers for targeted cancer therapy. Polymeric nanoparticles used in the clinic are biocompatible and have excellent stability. They have the potential to improve therapeutic effects while significantly reducing off-target toxicity. This review classifies smart drug delivery systems based on their components. Synthetic smart polymers used in the pharmaceutical industry, including enzyme-responsive, pH-responsive, and redox-responsive polymers, are discussed. Natural polymers derived from plants, animals, microbes, and marine organisms can also be used to construct stimuli-responsive delivery systems with excellent biocompatibility, low toxicity, and biodegradability. The applications of smart or stimuli-responsive polymers in cancer immunotherapies are discussed in this systemic review. We summarize different delivery strategies and mechanisms that can be used in cancer immunotherapy and give examples of each case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA