Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Anim Ecol ; 90(6): 1583-1595, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33724460

RESUMEN

Understanding the effect of stage-specific traits on species feeding habits can reveal how natural selection shapes life strategies. Amino acid (AA) nitrogen stable isotopes (δ15 N) provide multiple proxies of habitat baseline values and diet that can improve our understanding of species feeding strategies relative to their animal metabolism. We evaluated the effect of body length as a proxy for life stage and sex on the feeding habits of the common dolphin Delphinus delphis delphis using δ13 C and δ15 N in bulk tissue and AAs δ15 N from skin samples collected for almost two decades. For bulk δ13 C and δ15 N data, we used SIBER analysis to compare isotopic niches by sex and life stage. For AA δ15 N data, we developed a hierarchical Bayesian model (HBM) to estimate indices of trophic status (Δ15 N and trophic position). The model reflected the natural hierarchical structure of AA data by partitioning variability into three sources: between laboratory replicates, within dolphins and among dolphins. Estimates of Δ15 N based on all trophic and source AAs were more precise for each dolphin, less variable among dolphins and on average 2.4‰ higher than indices based on single trophic (Glx) and source (Phe) AAs. Precision was further increased when information was shared among individuals through random effects or regression models. Estimates of trophic position showed similar patterns. Both Δ15 N and δ15 Nbulk isotopic niches showed no difference by sex, suggesting that males and females have similar feeding habits and may not segregate. However, lower Δ15 N values for weaning calves and smaller juveniles discriminate them from adults, whereas δ15 N bulk isotopic niches do not. A trophic discrimination factor (TDFTro-Src ) of 3.1‰ was required for reasonable estimates of trophic position for these dolphins. Together, the lack of δ15 N differences between sexes, low variation between juveniles and adults and knowledge of common dolphins' social organization support intraspecific feeding cooperation as an important strategy to feed in the highly dynamic marine environment. Our study also presents an efficient way to analyse complex AA δ15 N data using HBM to investigate foraging behaviour in long-lived marine species difficult to study in the wild.


Asunto(s)
Delfín Común , Aminoácidos , Animales , Teorema de Bayes , Isótopos de Carbono , Femenino , Isótopos de Nitrógeno
2.
Microb Ecol ; 75(2): 303-309, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29080910

RESUMEN

The dermis of cetaceans is in constant contact with microbial species. Although the skin of the bottlenose dolphin provides adequate defense against most disease-causing microbes, it also provides an environment for microbial community development. Microbial community uniqueness and richness associated with bottlenose dolphin skin is a function of varying habitats and changing environmental conditions. The current study uses ribosomal DNA as a marker to identify bacteria found on the skin of coastal and offshore bottlenose dolphins off of Southern California. The unique microbial communities recovered from these dolphins suggest a greater microbial diversity on the skin of offshore ecotype bottlenose dolphins, while microbial populations associated with the coastal ecotype include species that are more closely related to each other and that suggest exposure to communities that are likely to be associated with terrestrial runoff.


Asunto(s)
Bacterias/aislamiento & purificación , Delfín Mular/microbiología , Piel/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Biodiversidad , California , ADN Bacteriano/genética , ADN Ribosómico/genética , Ecosistema , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia
3.
Environ Sci Technol ; 50(22): 12129-12137, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27737539

RESUMEN

Nontargeted GC×GC-TOF/MS analysis of blubber from 8 common bottlenose dolphins (Tursiops truncatus) inhabiting the Southern California Bight was performed to identify novel, bioaccumulative DDT-related compounds and to determine their abundance relative to the commonly studied DDT-related compounds. We identified 45 bioaccumulative DDT-related compounds of which the majority (80%) is not typically monitored in environmental media. Identified compounds include transformation products, technical mixture impurities such as tris(chlorophenyl)methane (TCPM), the presumed TCPM metabolite tris(chlorophenyl)methanol (TCPMOH), and structurally related compounds with unknown sources, such as hexa- to octachlorinated diphenylethene. To investigate impurities in pesticide mixtures as possible sources of these compounds, we analyzed technical DDT, the primary source of historical contamination in the region, and technical Dicofol, a current use pesticide that contains DDT-related compounds. The technical mixtures contained only 33% of the compounds identified in the blubber, suggesting that transformation products contribute to the majority of the load of DDT-related contaminants in these sentinels of ocean health. Quantitative analysis revealed that TCPM was the second most abundant compound class detected in the blubber, following DDE, and TCPMOH loads were greater than DDT. QSPR estimates verified 4,4',4″-TCPM and 4,4'4,″-TCPMOH are persistent and bioaccumulative.


Asunto(s)
Delfín Mular/metabolismo , DDT/metabolismo , Tejido Adiposo/química , Animales , California , Delfines , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Contaminantes Químicos del Agua
4.
Environ Sci Technol ; 49(3): 1328-38, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25526519

RESUMEN

Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation.


Asunto(s)
Delfín Mular , Hidrocarburos Clorados/análisis , Contaminantes Químicos del Agua/análisis , Animales , California , Ecotipo , Monitoreo del Ambiente , Masculino
5.
J Hered ; 105(5): 611-26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24831238

RESUMEN

False killer whales (Pseudorca crassidens) are large delphinids typically found in deep water far offshore. However, in the Hawaiian Archipelago, there are 2 resident island-associated populations of false killer whales, one in the waters around the main Hawaiian Islands (MHI) and one in the waters around the Northwestern Hawaiian Islands (NWHI). We use mitochondrial DNA (mtDNA) control region sequences and genotypes from 16 nuclear DNA (nucDNA) microsatellite loci from 206 individuals to examine levels of differentiation among the 2 island-associated populations and offshore animals from the central and eastern North Pacific. Both mtDNA and nucDNA exhibit highly significant differentiation between populations, confirming limited gene flow in both sexes. The mtDNA haplotypes exhibit a strong pattern of phylogeographic concordance, with island-associated populations sharing 3 closely related haplotypes not found elsewhere in the Pacific. However, nucDNA data suggest that NWHI animals are at least as differentiated from MHI animals as they are from offshore animals. The patterns of differentiation revealed by the 2 marker types suggest that the island-associated false killer whale populations likely share a common colonization history, but have limited contemporary gene flow.


Asunto(s)
ADN Mitocondrial/genética , Delfines/genética , Genética de Población , Alelos , Animales , Flujo Génico , Sitios Genéticos , Variación Genética , Haplotipos , Hawaii , Repeticiones de Microsatélite/genética , Familia de Multigenes , Filogeografía , Análisis de Secuencia de ADN
6.
Chemosphere ; 221: 656-664, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30665094

RESUMEN

Despite decades-long bans on the production and use of certain chemicals, many halogenated organic compounds (HOCs) are persistent and can bioaccumulate in the marine environment with the potential to cause physiological harm to marine fauna. Highly lipid-rich tissue (e.g., marine mammal blubber) functions as a reservoir for HOCs, and selecting ideal indicator species is a priority for retrospective and proactive screening efforts. We selected five marine mammal species as possible indicators for the Southern California Bight (SCB) and applied a non-targeted analytical method paired with an automated data reduction strategy to catalog a broad range of known, known but unexpected, and unknown compounds in their blubber. A total of 194 HOCs were detected across the study species (n = 25 individuals), 81% of which are not routinely monitored, including 30 halogenated natural products and 45 compounds of unknown structure and origin. The cetacean species (long-beaked common dolphin, short-beaked common dolphin, and Risso's dolphin) averaged 128 HOCs, whereas pinnipeds (California sea lion and Pacific harbor seal) averaged 47 HOCs. We suspect this disparity can be attributed to differences in life history, foraging strategies, and/or enzyme-mediated metabolism. Our results support proposing (1) the long- and short-beaked common dolphin as apex marine predator sentinels for future and retrospective biomonitoring of the SCB ecosystem and (2) the use of non-targeted contaminant analyses to identify and prioritize emerging contaminants. The use of a sentinel marine species together with the non-targeted analytical approach will enable a proactive approach to environmental contaminant monitoring.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Hidrocarburos Halogenados/análisis , Océanos y Mares , Contaminantes Químicos del Agua/análisis , Animales , California , Caniformia/metabolismo , Delfines/metabolismo , Compuestos Orgánicos/metabolismo , Estudios Retrospectivos
7.
Sci Adv ; 3(10): e1701140, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29057322

RESUMEN

Climate variability alters nitrogen cycling, primary productivity, and dissolved oxygen concentration in marine ecosystems. We examined the role of this variability (as measured by six variables) on food chain length (FCL) in the California Current (CC) by reconstructing a time series of amino acid-specific δ15N values derived from common dolphins, an apex pelagic predator, and using two FCL proxies. Strong declines in FCL were observed after the 1997-1999 El Niño Southern Oscillation (ENSO) event. Bayesian models revealed longer FCLs under intermediate conditions for surface temperature, chlorophyll concentration, multivariate ENSO index, and total plankton volume but not for hypoxic depth and nitrate concentration. Our results challenge the prevalent paradigm that suggested long-term stability in the food web structure in the CC and, instead, reveal that pelagic food webs respond strongly to disturbances associated with ENSO events, local oceanography, and ongoing changes in climate.


Asunto(s)
Ambiente , Cadena Alimentaria , Aminoácidos , California , Ecosistema , Geografía , Nitrógeno , Isótopos de Nitrógeno
8.
PLoS One ; 10(2): e0115257, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25643144

RESUMEN

When paired with dart biopsying, quantifying cortisol in blubber tissue may provide an index of relative stress levels (i.e., activation of the hypothalamus-pituitary-adrenal axis) in free-ranging cetacean populations while minimizing the effects of the act of sampling. To validate this approach, cortisol was extracted from blubber samples collected from beach-stranded and bycaught short-beaked common dolphins using a modified blubber steroid isolation technique and measured via commercially available enzyme immunoassays. The measurements exhibited appropriate quality characteristics when analyzed via a bootstraped stepwise parallelism analysis (observed/expected = 1.03, 95%CI: 99.6 - 1.08) and showed no evidence of matrix interference with increasing sample size across typical biopsy tissue masses (75-150 mg; r(2) = 0.012, p = 0.78, slope = 0.022 ng(cortisol deviation)/ul(tissue extract added)). The relationships between blubber cortisol and eight potential cofactors namely, 1) fatality type (e.g., stranded or bycaught), 2) specimen condition (state of decomposition), 3) total body length, 4) sex, 5) sexual maturity state, 6) pregnancy status, 7) lactation state, and 8) adrenal mass, were assessed using a Bayesian generalized linear model averaging technique. Fatality type was the only factor correlated with blubber cortisol, and the magnitude of the effect size was substantial: beach-stranded individuals had on average 6.1-fold higher cortisol levels than those of bycaught individuals. Because of the difference in conditions surrounding these two fatality types, we interpret this relationship as evidence that blubber cortisol is indicative of stress response. We found no evidence of seasonal variation or a relationship between cortisol and the remaining cofactors.


Asunto(s)
Tejido Adiposo/metabolismo , Delfines/fisiología , Hidrocortisona/metabolismo , Glándulas Suprarrenales/crecimiento & desarrollo , Animales , Delfines/metabolismo , Femenino , Explotaciones Pesqueras , Masculino , Tamaño de los Órganos , Embarazo , Estaciones del Año , Sesgo de Selección , Estrés Fisiológico
9.
PLoS One ; 10(3): e0120727, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25785692

RESUMEN

We inferred the population densities of blue whales (Balaenoptera musculus) and short-beaked common dolphins (Delphinus delphis) in the Northeast Pacific Ocean as functions of the water-column's physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT). Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge). Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more southern portion of the Humboldt Current System. We posit that such reductions in available foraging habitats during climatic disturbances could incur high energetic costs on these populations, ultimately affecting individual fitness and survival.


Asunto(s)
Cetáceos , Modelos Estadísticos , Océanos y Mares , Animales , Teorema de Bayes , Densidad de Población , Análisis Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA