Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(24): 16492-16498, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37306624

RESUMEN

Both gallium nitride (GaN) and hybrid organic-inorganic perovskites such as methylammonium lead iodide (MAPbI3) have significantly influenced modern optoelectronics. Both marked a new beginning in the development of important branches in the semiconductor industry. For GaN, it is solid-state lighting and high-power electronics, and for MAPbI3, it is photovoltaics. Today, both are widely incorporated as building blocks in solar cells, LEDs and photodetectors. Regarding multilayers, and thus multi-interfacial construction of such devices, an understanding of the physical phenomena governing electronic transport at the interfaces is relevant. In this study, we present the spectroscopic investigation of carrier transfer across the MAPbI3/GaN interface by contactless electroreflectance (CER) for n-type and p-type GaN. The effect of MAPbI3 on the Fermi level position at the GaN surface was determined which allowed us to draw conclusions about the electronic phenomena at the interface. Our results show that MAPbI3 shifts the surface Fermi level deeper inside the GaN bandgap. Regarding different surface Fermi level positions for n-type and p-type GaN, we explain this as carrier transfer from GaN to MAPbI3 for n-type GaN and in the opposite direction for p-type GaN. We extend our outcomes with a demonstration of a broadband and self-powered MAPbI3/GaN photodetector.

2.
Opt Express ; 29(3): 3001-3010, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770908

RESUMEN

Most optoelectronic devices share the same basic epitaxial structure - a stack of quantum wells (QWs) sandwiched between p- and n-doped layers. In nitride semiconductors, where holes have 20-times lower mobility than electrons, the holes are able to populate only the topmost 1-2 QWs. The inability to distribute the holes in a large-enough number of QWs is a cause of high Auger recombination in nitride LEDs. Lateral carrier injection is an alternative design, in which the doped regions are situated at the sides of the QW stack and the carriers diffuse horizontally into the QWs. Given that the carriers are injected into all available QWs, it finally makes sense to grow structures with a large number of QWs. We report the results of our computer simulations, which explore the advantages of LCI-based LEDs in terms of energy efficiency.

3.
Opt Express ; 28(20): 30299-30308, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114912

RESUMEN

A novel approach to fabricate efficient nitride light-emitting diodes (LEDs) grown on gallium polar surface operating at cryogenic temperatures is presented. We investigate and compare LEDs with standard construction with structures where p-n junction field is inverted through the use of bottom tunnel junction (BTJ). BTJ LEDs show improved turn on voltage, reduced parasitic recombination and increased quantum efficiency at cryogenic temperatures. This is achieved by moving to low resistivity n-type contacts and nitrogen polar-like built-in field with respect to current flow. It inhibits the electron overflow past quantum wells and improves hole injection even at T=12K. Therefore, as cryogenic light sources, BTJ LEDs offer significantly enhanced performance over standard LEDs.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38666754

RESUMEN

III-nitrides possess several unique qualities, which allow them to make the world brighter, but their uniqueness is not always beneficial. The uniaxial nature of the wurtzite crystal leads to strikingly large electric polarization fields, which along with the high acceptor ionization energy cause low injection efficiency and uneven carrier distribution for multiple quantum well (QW) light emitting devices. In this work, we explore the carrier distribution in Ga-polar LED in two configurations: standard "p-up" and "p-down", which is accomplished by utilizing a bottom-tunnel junction. This enables the inversion of the sequence of the p and n layers while altering the direction of the current flow with respect to the inherent polarization. To probe the carrier distribution two, color-coded QWs are used in alternating sequences. Our study reveals that for "p-down" devices carrier transport through multiple QWs is limited by the potential barrier at the QW interface, which is in contrast to results for "p-up" structures, where hole mobility is the bottleneck. Moreover, investigated "p-down" LEDs exhibit an extremely low turn-on voltage.

5.
Nat Commun ; 14(1): 7562, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985775

RESUMEN

Gallium nitride-based light-emitting diodes have revolutionized the lighting market by becoming the most energy-efficient light sources. However, the power grid, in example electricity delivery system, is built based on alternating current, which raises problems for directly driving light emitting diodes that require direct current to operate effectively. In this paper, we demonstrate a proof-of-concept device that addresses this fundamental issue - a gallium nitride-based bidirectional light-emitting diode. Its structure is symmetrical with respect to the active region, which, depending on the positive or negative bias, allows for the injection of either electrons or holes from each side. It is composed of two tunnel junctions that surround the active region. In this work, the optical and electrical properties of bidirectional light emitting diodes are investigated under direct and alternating current conditions. We find that the light is emitted in both directions of the supplied current, contrary to conventional light emitting diodes; hence, bidirectional light-emitting diodes can be considered a semiconductor light source powered directly with alternating current. In addition, we show that bidirectional light-emitting diodes can be stacked vertically to multiply the optical power achieved from a single device.

6.
Materials (Basel) ; 15(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36079311

RESUMEN

Atomically thin metal adlayers are used as surfactants in semiconductor crystal growth. The role of the adlayer in the incorporation of dopants in GaN is completely unexplored, probably because n-type doping of GaN with Si is relatively straightforward and can be scaled up with available Si atomic flux in a wide range of dopant concentrations. However, a surprisingly different behavior of the Ge dopant is observed, and the presence of atomically thin gallium or an indium layer dramatically affects Ge incorporation, hindering the fabrication of GaN:Ge structures with abrupt doping profiles. Here, we show an experimental study presenting a striking improvement in sharpness of the Ge doping profile obtained for indium as compared to the gallium surfactant layer during GaN-plasma-assisted molecular beam epitaxy. We show that the atomically thin indium surfactant layer promotes the incorporation of Ge in contrast to the gallium surfactant layer, which promotes segregation of Ge to the surface and Ge crystallite formation. Understanding the role of the surfactant is essential to control GaN doping and to obtain extremely high n-type doped III-nitride layers using Ge, because doping levels >1020 cm−3 are not easily available with Si.

7.
Materials (Basel) ; 15(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36295135

RESUMEN

This paper presents low-temperature measurements of magnetoresistivity in heavily doped n-type GaN grown by basic GaN growth technologies: molecular beam epitaxy, metal-organic vapor phase epitaxy, halide vapor phase epitaxy and ammonothermal. Additionally, GaN crystallized by High Nitrogen Pressure Solution method was also examined. It was found that all the samples under study exhibited negative magnetoresistivity at a low temperature (10 K < T < 50 K) and for some samples this effect was observed up to 100 K. This negative magnetoresistivity effect is analyzed in the frame of the weak localization phenomena in the case of three-dimensional electron gas in a highly doped semiconductor. This analysis allows for determining the phasing coherence time τφ for heavily doped n-type GaN. The obtained τφ value is proportional to T−1.34, indicating that the electron−electron interaction is the main dephasing mechanism for the free carriers.

8.
Materials (Basel) ; 15(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35009382

RESUMEN

The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses-2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger-Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA