Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Chem Phys ; 156(23): 234101, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732526

RESUMEN

Diatoms are a group of marine algae that are responsible for a significant part of global oxygen production. Adapted to life in an aqueous environment dominated by the blue-green light, their major light-harvesting antennae-fucoxanthin-chlorophyll protein complexes (FCPs)-exhibit different pigment compositions than of plants. Despite extensive experimental studies, until recently the theoretical description of excitation energy dynamics in these complexes was limited by the lack of high-resolution structural data. In this work, we use the recently resolved crystallographic information of the FCP complex from Phaeodactylum tricornutum diatom [Wang et al., Science 363, 6427 (2019)] and quantum chemistry-based calculations to evaluate the chlorophyll transition dipole moments, atomic transition charges from electrostatic potential, and the inter-chlorophyll couplings in this complex. The obtained structure-based excitonic couplings form the foundation for any modeling of stationary or time-resolved spectroscopic data. We also calculate the inter-pigment Förster energy transfer rates and identify two quickly equilibrating chlorophyll clusters.


Asunto(s)
Clorofila , Diatomeas , Clorofila/química , Proteínas de Unión a Clorofila/química , Proteínas de Unión a Clorofila/metabolismo , Diatomeas/química , Diatomeas/metabolismo , Electrónica , Complejos de Proteína Captadores de Luz/química , Xantófilas/química , Xantófilas/metabolismo
2.
Photosynth Res ; 135(1-3): 275-284, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28825173

RESUMEN

Non-photochemical quenching (NPQ) is responsible for protecting the light-harvesting apparatus of plants from damage at high light conditions. Although it is agreed that the major part of NPQ, an energy-dependent quenching (qE), originates in the light-harvesting antenna, its exact mechanism is still debated. In our earlier work (Chmeliov et al. in Nat Plants 2:16045, 2016), we have analyzed the time-resolved fluorescence (TRF) from the trimers and aggregates of the major light-harvesting complexes of plants (LHCII) over a broad temperature range and came to a conclusion that three distinct states are required to describe the experimental data: two of them correspond to the emission bands centered at ~680 and ~700 nm, and the third state is responsible for the excitation quenching. This was opposite to earlier suggestions of a two-state model, where the red-shifted fluorescence and excitation quenching were assumed to be related. To examine such possibility, in the current work we repeat our analysis of the TRF data in terms of the two-state model. We find that even though it can reasonably describe the aggregate fluorescence, it fails to do so for the LHCII trimers. We conclude that the red-emitting state cannot be responsible for fluorescence quenching in the LHCII aggregates and reaffirm that the three-state model is the simplest possible description of the experimental data.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Luz , Agregado de Proteínas , Fluorescencia , Cinética , Modelos Biológicos , Temperatura
3.
Langmuir ; 34(47): 14410-14418, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30380887

RESUMEN

Reconstitution of transmembrane proteins into liposomes is a widely used method to study their behavior under conditions closely resembling the natural ones. However, this approach does not allow precise control of the liposome size, reconstitution efficiency, and the actual protein-to-lipid ratio in the formed proteoliposomes, which might be critical for some applications and/or interpretation of data acquired during the spectroscopic measurements. Here, we present a novel strategy employing methods of proteoliposome preparation, fluorescent labeling, purification, and surface immobilization that allow us to quantify these properties using fluorescence microscopy at the single-liposome level and for the first time apply it to study photosynthetic pigment-protein complexes LHCII. We show that LHCII proteoliposome samples, even after purification with a density gradient, always contain a fraction of nonreconstituted protein and are extremely heterogeneous in both protein density and liposome sizes. This strategy enables quantitative analysis of the reconstitution efficiency of different protocols and precise fluorescence spectroscopic study of various transmembrane proteins in a controlled nativelike environment.


Asunto(s)
Liposomas/metabolismo , Microscopía Fluorescente , Complejo de Proteína del Fotosistema II/metabolismo , Modelos Moleculares , Pisum sativum/enzimología , Complejo de Proteína del Fotosistema II/química , Conformación Proteica , Proteolípidos/metabolismo
4.
Phys Chem Chem Phys ; 19(34): 22957-22968, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28813042

RESUMEN

Plant light-harvesting is regulated by the Non-Photochemical Quenching (NPQ) mechanism involving the reversible formation of excitation quenching sites in the Photosystem II (PSII) antenna in response to high light. While the major antenna complex, LHCII, is known to be a site of NPQ, the precise mechanism of excitation quenching is not clearly understood. A preliminary model of the quenched crystal structure of LHCII implied that quenching arises from slow energy capture by Car pigments. It predicted a thoroughly quenched system but offered little insight into the defining aspects of this quenching. In this work, we present a thorough theoretical investigation of this quenching, addressing the factors defining the quenching pathway and possible mechanism for its (de)activation. We show that quenching in LHCII crystals is the result of slow energy transfer from chlorophyll to the centrally-bound lutein Cars, predominantly the Lut620 associated with the chlorophyll 'terminal emitter', one of the proposed in vivo pathways. We show that this quenching is rather independent of the particular species of Car and excitation 'site' energy. The defining parameter is the resonant coupling between the pigment co-factors. Lastly, we show that these interactions must be severely suppressed for a light-harvesting state to be recovered.

5.
Photosynth Res ; 127(1): 49-60, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25605669

RESUMEN

Complex multi-exponential fluorescence decay kinetics observed in various photosynthetic systems like photosystem II (PSII) have often been explained by the reversible quenching mechanism of the charge separation taking place in the reaction center (RC) of PSII. However, this description does not account for the intrinsic dynamic disorder of the light-harvesting proteins as well as their fluctuating dislocations within the antenna, which also facilitate the repair of RCs, state transitions, and the process of non-photochemical quenching. Since dynamic fluctuations result in varying connectivity between pigment-protein complexes, they can also lead to non-exponential excitation decay kinetics. Based on this presumption, we have recently proposed a simple conceptual model describing excitation diffusion in a continuous medium and accounting for possible variations of the excitation transfer pathways. In the current work, this model is further developed and then applied to describe fluorescence kinetics originating from very diverse antenna systems, ranging from PSII of various sizes to LHCII aggregates and even the entire thylakoid membrane. In all cases, complex multi-exponential fluorescence kinetics are perfectly reproduced on the entire relevant time scale without assuming any radical pair equilibration at the side of the excitation quencher, but using just a few parameters reflecting the mean excitation energy transfer rate as well as the overall average organization of the photosynthetic antenna.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Modelos Biológicos , Transferencia de Energía , Fluorescencia , Cinética , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/química , Tilacoides/metabolismo
6.
Phys Chem Chem Phys ; 18(37): 25852-60, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27604572

RESUMEN

Photosystem II (PSII) is a huge pigment-protein supercomplex responsible for the primary steps of photosynthesis in green plants. Its light-harvesting antenna exhibits efficient transfer of the absorbed excitation energy to the reaction center and also contains a well-regulated protection mechanism against over-excitation in strong light conditions. The latter is based on conformational changes in antenna complexes that open up excitation decay channels resulting in considerable fluorescence quenching. Meanwhile, fluorescence blinking, observed in single antennas, is likely caused by a similar mechanism. Thus the question arises whether this effect is also present in and relevant to the native supramolecular organization of a fully assembled PSII. To further investigate energy transfer and quenching in single PSII, we performed single-molecule experiments on PSII supercomplexes at 5 °C. Analysis of the fluorescence intensity and mean lifetime allowed us to distinguish detached antennas and specifically analyze PSII supercomplexes. The average fluorescence lifetime in PSII of about 100-150 ps, measured under our extreme excitation conditions, is surprisingly similar to published ensemble lifetime data of photochemical quenching in PSII of a similar size. In our case, this lifetime is nevertheless caused by either one or multiple quenched antennas or by a quencher in the reaction center. The observed reversible light-induced changes in fluorescence intensity on a millisecond timescale are reminiscent of blinking subunits. Our results therefore directly illustrate how environmental control over a fluctuating antenna can regulate light-harvesting in plant photosynthesis.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/química , Clorofila/química , Transferencia de Energía , Fluorescencia , Cinética , Simulación de Dinámica Molecular , Fotosíntesis , Conformación Proteica , Multimerización de Proteína , Imagen Individual de Molécula
7.
Phys Chem Chem Phys ; 17(24): 15857-67, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-26017055

RESUMEN

The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (>20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Teoría Cuántica , Transferencia de Energía , Modelos Moleculares , Complejo de Proteína del Fotosistema II/metabolismo
8.
Phys Chem Chem Phys ; 17(30): 19844-53, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26156159

RESUMEN

In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching mechanism called singlet-triplet (S-T) annihilation that strongly depends on the excitation density. In this work we investigated the fluorescence decay kinetics of single immobilized LHCIIs at room temperature and found a two-exponential decay with a slow (3.5 ns) and a fast (35 ps) component. The relative amplitude fraction of the fast component increases with increasing excitation intensity, and the resulting decrease in the fluorescence quantum yield suggests annihilation effects. Modulation of the excitation pattern by means of an acousto-optic modulator (AOM) furthermore allowed us to resolve the time-dependent accumulation and decay rate (∼7 µs) of the quenching species. Inspired by singlet-singlet (S-S) annihilation studies, we developed a stochastic model and then successfully applied it to describe and explain all the experimentally observed steady-state and time-dependent kinetics. That allowed us to distinctively identify the quenching mechanism as S-T annihilation. Quantitative fitting resulted in a conclusive set of parameters validating our interpretation of the experimental results. The obtained stochastic model can be generalized to describe S-T annihilation in small molecular aggregates where the equilibration time of excitations is much faster than the annihilation-free singlet excited state lifetime.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Clorofila/química , Cinética , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Teóricos , Teoría Cuántica , Espectrometría de Fluorescencia
9.
J Am Chem Soc ; 136(25): 8963-72, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24870124

RESUMEN

One of the major players in oxygenic photosynthesis, photosystem II (PSII), exhibits complex multiexponential fluorescence decay kinetics that for decades has been ascribed to reversible charge separation taking place in the reaction center (RC). However, in this description the protein dynamics is not taken into consideration. The intrinsic dynamic disorder of the light-harvesting proteins along with their fluctuating dislocations within the antenna inevitably result in varying connectivity between pigment-protein complexes and therefore can also lead to nonexponential excitation decay kinetics. On the basis of this presumption, we propose a simple conceptual model describing excitation diffusion in a continuous medium and accounting for possible variations of the excitation transfer rates. Recently observed fluorescence kinetics of PSII of different sizes are perfectly reproduced with only two adjustable parameters instead of the many decay times and amplitudes required in standard analysis procedures; no charge recombination in the RC is required. The model is also able to provide valuable information about the structural and functional organization of the photosynthetic antenna and in a straightforward way solves various contradictions currently existing in the literature.


Asunto(s)
Fluorescencia , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Cinética , Fotosíntesis , Complejo de Proteína del Fotosistema II/química
10.
J Phys Chem B ; 128(20): 4887-4897, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38743921

RESUMEN

Fluorescence concentration quenching occurs when increasing molecular concentration of fluorophores results in a decreasing fluorescence quantum yield. Even though this phenomenon has been studied for decades, its mechanisms and signatures are not yet fully understood. The complexity of the problem arises due to energy migration and trapping in huge networks of molecules. Most of the available theoretical work focuses on integral quantities like fluorescence quantum yield and mean excitation lifetime. In this work, we present a numerical study of the fluorescence decay kinetics of three-dimensional and two-dimensional molecular systems. We investigate the differences arising from the variations in models of trap formations. We also analyze the influence of the molecular orientations to the fluorescence decay kinetics. We compare our results to the well-known analytical models and discuss their ranges of validity. Our findings suggest that the analytical models can provide inspiration for different ways of approximating the fluorescence kinetics, yet more detailed analysis of the experimental data should be done by comparison with numerical simulations.

11.
Biochim Biophys Acta Bioenerg ; 1865(2): 149030, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163538

RESUMEN

Diatoms, a major group of algae, account for about a quarter of the global primary production on Earth. These photosynthetic organisms face significant challenges due to light intensity variations in their underwater habitat. To avoid photodamage, they have developed very efficient non-photochemical quenching (NPQ) mechanisms. These mechanisms originate in their light-harvesting antenna - the fucoxanthin-chlorophyll protein (FCP) complexes. Spectroscopic studies of NPQ in vivo are often hindered by strongly overlapping signals from the photosystems and their antennae. Fortunately, in vitro FCP aggregates constitute a useful model system to study fluorescence (FL) quenching in diatoms. In this work, we present streak-camera FL measurements on FCPa and FCPb complexes, isolated from a centric diatom Cyclotella meneghiniana, and their aggregates. We find that spectra of non-aggregated FCP are dominated by a single fluorescing species, but the FL spectra of FCP aggregates additionally contain contributions from a redshifted emissive state. We relate this red state to a charge transfer state between chlorophyll c and chlorophyll a molecules. The FL quenching, on the other hand, is due to an additional dark state that involves incoherent energy transfer to the fucoxanthin carotenoids. Overall, the global picture of energy transfer and quenching in FCP aggregates is very similar to that of major light-harvesting complexes in higher plants (LHCII), but microscopic details between FCPs and LHCIIs differ significantly.


Asunto(s)
Proteínas de Unión a Clorofila , Diatomeas , Proteínas de Unión a Clorofila/química , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila A/metabolismo , Xantófilas/metabolismo , Diatomeas/metabolismo
12.
Biochim Biophys Acta Bioenerg ; : 149493, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971351

RESUMEN

In the field of photosynthesis, only a limited number of approaches of super-resolution fluorescence microscopy can be used, as the functional architecture of the thylakoid membrane in chloroplasts is probed through the natural fluorescence of chlorophyll molecules. In this work, we have used a custom-built fluorescence microscopy method called Single Pixel Reconstruction Imaging (SPiRI) that yields a 1.4 gain in lateral and axial resolution relative to confocal fluorescence microscopy, to obtain 2D images and 3D-reconstucted volumes of isolated chloroplasts, obtained from pea (Pisum sativum), spinach (Spinacia oleracea) and Arabidopsis thaliana. In agreement with previous studies, SPiRI images exhibit larger thylakoid grana diameters when extracted from plants under low-light regimes. The three-dimensional thylakoid architecture, revealing the complete network of the thylakoid membrane in intact, non-chemically-fixed chloroplasts can be visualized from the volume reconstructions obtained at high resolution. From such reconstructions, the stromal connections between each granum can be determined and the fluorescence intensity in the stromal lamellae compared to those of neighboring grana.

13.
ACS Appl Electron Mater ; 5(1): 317-326, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38616982

RESUMEN

The best perovskite solar cells currently demonstrate more than 25% efficiencies, yet many fundamental processes that determine the operation of these devices are still not fully understood. In particular, even though the device performance strongly depends on charge carrier transport across the perovskite layer to selective electrodes, information about this process is still very controversial. Here, we investigate charge carrier motion and extraction from an archetypical CH3NH3PbI3 (MAPI) perovskite solar cell. We use the ultrafast electric-field-modulated transient absorption technique, which allows us to evaluate the electric field dynamics from the time-resolved electroabsorption spectra and to visualize the motion of charge carriers with subpicosecond time resolution. We demonstrate that photogenerated holes drift across the mesoporous TiO2/perovskite layer during hundreds of picoseconds. On the other hand, their extraction into the spiro-OMeTAD hole transporting layer lasts for more than 1 nanosecond, suggesting that the hole extraction is limited by the perovskite/spiro-OMeTAD interface rather than by the hole transport through the perovskite layer. Additionally, we use the ultrafast time-resolved fluorescence technique that reveals fluorescence decay during tens of picoseconds, which we attribute to the spatial separation of electrons and holes.

14.
ACS Appl Mater Interfaces ; 15(36): 42784-42791, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37647415

RESUMEN

Photoluminescence (PL) measurements are a widely used technique for the investigation of perovskite-based materials and devices. Although electric field-induced PL quenching provides additional useful information, this phenomenon is quite complex and not yet clearly understood. Here, we address the PL quenching of methylammonium lead iodide (MAPbI3) perovskite in a light-emitting diode (PeLED) architecture. We distinguish two quenching mechanisms: (a) indirect quenching by slow irreversible or partially reversible material changes that occur gradually under the applied light and electric field and (b) direct quenching by the influence of the electric field on the charge carrier densities, their spatial distributions, and radiative recombination rates. Direct quenching, observed under the abrupt application of negative voltage, causes a decrease of the PL intensity. However, the PL intensity then partially recovers within tens of milliseconds as mobile ions screen the internal electric field. The screening time increases to hundreds of seconds at low temperatures, indicating activation energies for ion motion of about 80 meV. On the other hand, ultrafast time-resolved PL measurements revealed two main phases of direct quenching: an instantaneous reduction in the radiative carrier recombination rate, which we attribute to the electron and hole displacement within individual perovskite grains, followed by a second phase lasting hundreds of picoseconds, which is due to the charge carrier extraction and spatial separation of electron and hole "clouds" within the entire perovskite layer thickness.

15.
J Photochem Photobiol B ; 218: 112174, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33799009

RESUMEN

Incorporation of membrane proteins into reconstituted lipid membranes is a common approach for studying their structure and function relationship in a native-like environment. In this work, we investigated fluorescence properties of liposome-reconstituted major light-harvesting complexes of plants (LHCII). By utilizing liposome labelling with the fluorescent dye molecules and single-molecule microscopy techniques, we were able to study truly liposome-reconstituted LHCII and compare them with bulk measurements and liposome-free LHCII aggregates bound to the surface. Our results showed that fluorescence lifetime obtained in bulk and in single liposome measurements were correlated. The fluorescence lifetimes of LHCII were shorter for liposome-free LHCII than for reconstituted LHCII. In the case of liposome-reconstituted LHCII, fluorescence lifetime showed dependence on the protein density reminiscent to concentration quenching. The dependence of fluorescence lifetime of LHCII on the liposome size was not significant. Our results demonstrated that fluorescence quenching can be induced by LHCII - LHCII interactions in reconstituted membranes, most likely occurring via the same mechanism as photoprotective non-photochemical quenching in vivo.


Asunto(s)
Colorantes Fluorescentes/química , Complejos de Proteína Captadores de Luz/química , Liposomas/química , Extractos Vegetales/química , Proteínas Quinasas/química , Cinética , Agregado de Proteínas , Imagen Individual de Molécula , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Propiedades de Superficie
16.
Biochim Biophys Acta Bioenerg ; 1861(4): 148119, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31734196

RESUMEN

Photosynthetic productivity usually saturates far below the maximum solar light intensity, meaning that in those conditions many absorbed photons and the resulting electronic excitations of the pigment molecules can no longer be utilized for photosynthesis. To avoid photodamage, various protection mechanisms are induced that dissipate excess excitations, which otherwise could lead to the formation of harmful molecular species like singlet oxygen. This Non-Photochemical Quenching (NPQ) of excitations can be monitored via a decrease of the chlorophyll fluorescence. There is consensus that in plants 1) there are at least two major NPQ (sub)processes and 2) NPQ (de)activation occurs on various time scales, ranging from (tens of) seconds to minutes. This relatively slow switching has a negative effect on photosynthetic efficiency, and Kromdijk et al. demonstrated in 2016 (Science 354, 857) that faster switching rates can lead to increased crop productivity. Very recently, we were involved in the discovery of a new NPQ process that switches off well within a millisecond (Farooq et al. (2018) Nat. Plants 4, 225). Here we describe the current level of knowledge regarding this process and discuss its implications.


Asunto(s)
Biomasa , Procesos Fotoquímicos , Plantas/metabolismo , Cinética , Modelos Biológicos , Fotosíntesis
17.
Chem Sci ; 11(22): 5697-5709, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32874506

RESUMEN

The light-harvesting complexes (LHCs) of plants can regulate the level of excitation in the photosynthetic membrane under fluctuating light by switching between different functional states with distinct fluorescence properties. One of the most fascinating yet obscure aspects of this regulation is how the vast conformational landscape of LHCs is modulated in different environments. Indeed, while in isolated antennae the highly fluorescent light-harvesting conformation dominates, LHC aggregates display strong fluorescence quenching, representing therefore a model system for the process of energy dissipation developed by plants to avoid photodamage in high light. This marked difference between the isolated and oligomeric conditions has led to the widespread belief that aggregation is the trigger for the photoprotective state of LHCs. Here, a detailed analysis of time-resolved fluorescence experiments performed on aggregates of CP29 - a minor LHC of plants - provides new insights into the heterogeneity of emissive states of this antenna. A comparison with the data on isolated CP29 reveals that, though aggregation can stabilize short-lived conformations to a certain extent, the massive quenching upon protein clustering is mainly achieved by energetic connectivity between complexes that maintain the same long-lived and dissipative states accessed in the isolated form. Our results also explain the typical far-red enhancement in the emission of antenna oligomers in terms of a sub-population of long-lived redshifted complexes competing with quenched complexes in the energy trapping. Finally, the role of selected chlorophylls in shaping the conformational landscape of the antenna is also addressed by studying mutants lacking specific pigments.

18.
J Phys Chem Lett ; 10(8): 1779-1783, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30917658

RESUMEN

High performance of both photovoltaic and electroluminescent devices requires low nonradiative recombination losses. In perovskites, such loses strongly depend on the carrier traps related to the mobile ions and vacancies, causing I- V hysteresis of solar cells and influencing the performance of other optoelectronic devices, such as photodetectors and LEDs. To address the dynamics of the mobile ions, here we investigate electroluminescence time evolution in perovskite solar cells under constant and pulsed voltage conditions. We propose a model, accounting for the spatial ion accumulation and explaining the complex electroluminescence dynamics both on fast (microseconds) and slow (seconds) time scales. We demonstrate the appearance of a high-intensity short electroluminescence peak (overshoot pulse) immediately after termination of the electrical pulse. The generation of a giant overshoot pulse suggests a simple way to achieve high pulsed luminescence intensity with a low current density, which opens new prospects toward optical gain and implementation of electrically pumped lasers.

19.
J Phys Chem Lett ; 10(23): 7340-7346, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31710503

RESUMEN

The photosynthetic apparatus of plants is a robust self-adjustable molecular system, able to function efficiently under varying environmental conditions. Under strong sunlight, it switches into photoprotective mode to avoid overexcitation by safely dissipating the excess absorbed light energy via nonphotochemical quenching (NPQ). Unfortunately, heterogeneous organization and simultaneous occurrence of multiple processes within the thylakoid membrane impede the study of natural NPQ under in vivo conditions; thus, usually artificially prepared antennae have been studied instead. However, it has never been shown directly that the origin of fluorescence quenching observed in these artificial systems underlies natural NPQ. Here we report the time-resolved fluorescence measurements of the dark-adapted and preilluminated-to induce NPQ-intact chloroplasts, performed over a broad temperature range. We show that their spectral response matches that observed in the LHCII aggregates, thus demonstrating explicitly for the first time that the latter in vitro system preserves essential properties of natural photoprotection.


Asunto(s)
Cloroplastos/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Arabidopsis/metabolismo , Cloroplastos/efectos de los fármacos , Luz , Complejos de Proteína Captadores de Luz/química , Lincomicina/farmacología , Fotosíntesis/efectos de los fármacos , Plantas/metabolismo , Espectrometría de Fluorescencia , Temperatura
20.
Biochim Biophys Acta Bioenerg ; 1860(6): 499-507, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31055058

RESUMEN

Plants have developed multiple self-regulatory mechanisms to efficiently function under varying sunlight conditions. At high light intensities, non-photochemical quenching (NPQ) is activated on a molecular level, safely dissipating an excess excitation as heat. The exact molecular mechanism for NPQ is still under debate, but it is widely agreed that the direct participation of the carotenoid pigments is involved, one of the proposed candidate being the zeaxanthin. In this work, we performed fluorescence measurements of violaxanthin- and zeaxanthin-enriched major light-harvesting complexes (LHCII), in ensemble and at the single pigment-protein complex level, where aggregation is prevented by immobilization of LHCIIs onto a surface. We show that a selective enrichment of LHCII with violaxanthin or zeaxanthin affects neither the ability of LHCII to switch into a dissipative conformation nor the maximal level of induced quenching. However, the kinetics of the fluorescence decrease due to aggregation on the timescale of seconds are different, prompting towards a modulatory effect of zeaxanthin in the dynamics of quenching.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Zeaxantinas/metabolismo , Adaptación Fisiológica/fisiología , Concentración de Iones de Hidrógeno , Luz , Complejos de Proteína Captadores de Luz/química , Hojas de la Planta , Conformación Proteica , Espectrometría de Fluorescencia , Spinacia oleracea , Tilacoides/química , Tilacoides/metabolismo , Xantófilas/química , Xantófilas/metabolismo , Zeaxantinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA