Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 133(26): 10119-33, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21548604

RESUMEN

The chemical compositions and structures of organic-inorganic interfaces in mesostructurally ordered conjugated polymer-titania nanocomposites are shown to have a predominant influence on their photovoltaic properties. Such interfaces can be controlled by using surfactant structure-directing agents (SDAs) with different architectures and molecular weights to promote contact between the highly hydrophobic electron-donating conjugated polymer species and hydrophilic electron-accepting titania frameworks. A combination of small-angle X-ray scattering (SAXS), scanning and transmission electron microscopy (SEM, TEM), and solid-state NMR spectroscopy yields insights on the compositions, structures, and distributions of inorganic and organic species within the materials over multiple length scales. Two-dimensional NMR analyses establish the molecular-level interactions between the different SDA blocks, the conjugated polymer, and the titania framework, which are correlated with steady-state and time-resolved photoluminescence measurements of the photoexcitation dynamics of the conjugated polymer and macroscopic photocurrent generation in photovoltaic devices. Molecular understanding of the compositions and chemical interactions at organic-inorganic interfaces are shown to enable the design, synthesis, and control of the photovoltaic properties of hybrid functional materials.

2.
Science ; 246(4926): 71-7, 1989 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-17837765

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy continues to evolve as a primary technique in the study of solids. This review briefly describes some developments in modern NMR that demonstrate its exciting potential as an analytical tool in fields as diverse as physics, chemistry, biology, geology, and materials science. Topics covered include motional narrowing by sample reorientation, multiple-quantum and overtone spectroscopy, probing porous solids with guest atoms and molecules, two-dimensional NMR studies of chemical exchange and spin diffusion, experiments at extreme temperatures, NMR imaging of solid materials, and low-frequency and zero-field magnetic resonance. These developments permit increasingly complex structural and dynamical behavior to be probed at a molecular level and thus add to our understanding of macroscopic properties of materials.

3.
Science ; 269(5229): 1416-20, 1995 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-17731152

RESUMEN

Ordering at short-length scales is a universal feature of the glassy state. Experiments on boron oxide and other materials indicate that ordering on mesoscopic-length scales may also be universal. The high-resolution nuclear magnetic resonance (NMR) measurements of oxygen in boron oxide glass presented here provide evidence for structural units responsible for ordering on short- and intermediate-length scales. At the molecular level, planar BO(3/2) units accounted for the local ordering. Oxygen-17 NMR spectra resolved detailed features of the inclusion of these units in boroxol rings, oxygen bridging two rings, and oxygen shared between two nonring BO(3/2) units. On the basis of these and corroborative boron-11 NMR and scattering results, boron oxide glass consists of domains that are rich or poor in boroxol rings; these domains are proposed to be the structural basis of intermediate-range order in glassy boron oxide.

4.
Science ; 261(5126): 1299-303, 1993 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-17731857

RESUMEN

A model is presented to explain the formation and morphologies of surfactant-silicate mesostructures. Three processes are identified: multidentate binding of silicate oligomers to the cationic surfactant, preferential silicate polymerization in the interface region, and charge density matching between the surfactant and the silicate. The model explains present experimental data, including the transformation between lamellar and hexagonal mesophases, and provides a guide for predicting conditions that favor the formation of lamellar, hexagonal, or cubic mesostructures. Model Q(230) proposed by Mariani and his co-workers satisfactorily fits the x-ray data collected on the cubic mesostructure material. This model suggests that the silicate polymer forms a unique infinite silicate sheet sitting on the gyroid minimal surface and separating the surfactant molecules into two disconnected volumes.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 57(10): 2049-60, 2001 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-11666084

RESUMEN

Recent advances on the use of mesoporous and mesostructured materials for electronic and optical applications are reported. The focus is on materials which are processed by block-copolymer templating of silica under weakly acidic conditions and by employing dip- and spin-coating as well as soft lithographic methods to bring them into a well-defined macroscopic shape. Several chemical strategies allow the mesostructure architecture to be used for electronic/optical applications: Removal of the block-copolymers results in highly porous, mechanically and thermally robust materials which are promising candidates for low dielectric constant materials. Since the pores are easily accessible, these structures are also ideal hosts for optical sensors, when suitable are incorporated during synthesis. For example, a fast response optical pH sensor was implemented on this principle. As-synthesized mesostructured silica/block-copolymer composites, on the other hand, are excellently suited as host systems for laser dyes and photochromic molecules. Laser dyes like rhodamine 6G can be incorporated during synthesis in high concentrations with reduced dimerization. This leads to very-low-threshold laser materials which also show a good photostability of the occluded dye. In the case of photochromic molecules, the inorganic-organic nanoseparation enables a fast switching between the colorless and colored form of a spirooxazine molecule, attributed to a partitioning of the dye between the block-copolymer chains. The spectroscopic properties of these dye-doped nanocomposite materials suggest a silica/block-copolymer/dye co-assembly process, whereby the block-copolymers help to highly disperse the organic dye molecules.


Asunto(s)
Electrónica , Rayos Láser , Espectrofotometría/métodos , Colorantes Fluorescentes/farmacología , Concentración de Iones de Hidrógeno , Rodaminas/farmacología , Factores de Tiempo
6.
Phys Rev Lett ; 103(13): 136802, 2009 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-19905534

RESUMEN

Size-controlled ZnSe nanoparticles with high extents of atomic positional order are shown to exhibit large size-dependent variations in their local electronic environments. Solid-state ;{77}Se and ;{67}Zn NMR spectra reveal increasingly broad distributions of ;{77}Se and ;{67}Zn environments with decreasing nanoparticle sizes, in contrast with high degrees of atomic positional order established by transmission electron microscopy and x-ray diffraction. First-principles calculations of NMR parameters distinguish between atomic positional and electronic disorder that propagate from the nanoparticle surfaces and yield insights on the order and disorder present.

7.
J Am Chem Soc ; 123(19): 4519-29, 2001 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-11457238

RESUMEN

Self-assembled lamellar silica-surfactant mesophase composites have been prepared with crystal-like ordering in the silica frameworks using a variety of cationic surfactant species under hydrothermal conditions. These materials represent the first mesoscopically ordered composites that have been directly synthesized with structure-directing surfactants yielding highly ordered inorganic frameworks. One-dimensional solid-state 29Si NMR spectra, X-ray diffraction patterns, and infrared spectra show the progression of molecular organization in the self-assembled mesophases from structures with initially amorphous silica networks into sheets with very high degrees of molecular order. The silicate sheets appear to be two-dimensional crystals, whose structures and rates of formation depend strongly on the charge density of the cationic surfactant headgroups. Two-dimensional solid-state heteronuclear and homonuclear NMR measurements show the molecular proximities of the silica framework sites to the structure-directing surfactant molecules and establish local Si-O-Si bonding connectivities in these materials.

8.
Proc Natl Acad Sci U S A ; 96(2): 361-5, 1999 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-9892638

RESUMEN

Nanoscale control of the polymerization of silicon and oxygen determines the structures and properties of a wide range of siloxane-based materials, including glasses, ceramics, mesoporous molecular sieves and catalysts, elastomers, resins, insulators, optical coatings, and photoluminescent polymers. In contrast to anthropogenic and geological syntheses of these materials that require extremes of temperature, pressure, or pH, living systems produce a remarkable diversity of nanostructured silicates at ambient temperatures and pressures and at near-neutral pH. We show here that the protein filaments and their constituent subunits comprising the axial cores of silica spicules in a marine sponge chemically and spatially direct the polymerization of silica and silicone polymer networks from the corresponding alkoxide substrates in vitro, under conditions in which such syntheses otherwise require either an acid or base catalyst. Homology of the principal protein to the well known enzyme cathepsin L points to a possible reaction mechanism that is supported by recent site-directed mutagenesis experiments. The catalytic activity of the "silicatein" (silica protein) molecule suggests new routes to the synthesis of silicon-based materials.


Asunto(s)
Catepsinas/metabolismo , Endopeptidasas , Poríferos/metabolismo , Dióxido de Silicio/química , Citoesqueleto de Actina/ultraestructura , Animales , Catepsina L , Catepsinas/química , Catepsinas/ultraestructura , Celulosa/metabolismo , Celulosa/ultraestructura , Cisteína Endopeptidasas , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Estructura Molecular , Polímeros/metabolismo , Silanos/metabolismo
9.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA