Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 78, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243199

RESUMEN

BACKGROUND: Local adaptation is a key evolutionary process that enhances the growth of plants in their native habitat compared to non-native habitats, resulting in patterns of adaptive genetic variation across the entire geographic range of the species. The study of population adaptation to local environments and predicting their response to future climate change is important because of climate change. RESULTS: Here, we explored the genetic diversity of candidate genes associated with bud burst in pedunculate oak individuals sampled from 6 populations in Poland. Single nucleotide polymorphism (SNP) diversity was assessed in 720 candidate genes using the sequence capture technique, yielding 18,799 SNPs. Using landscape genomic approaches, we identified 8 FST outliers and 781 unique SNPs in 389 genes associated with geography, climate, and phenotypic variables (individual/family spring and autumn phenology, family diameter at breast height (DBH), height, and survival) that are potentially involved in local adaptation. Then, using a nonlinear multivariate model, Gradient Forests, we identified vulnerable areas of the pedunculate oak distribution in Poland that are at risk from climate change. CONCLUSIONS: The model revealed that pedunculate oak populations in the eastern part of the analyzed geographical region are the most sensitive to climate change. Our results might offer an initial evaluation of a potential management strategy for preserving the genetic diversity of pedunculate oak.


Asunto(s)
Quercus , Humanos , Quercus/genética , Evolución Biológica , Genómica , Bosques , Polonia , Adaptación Fisiológica/genética
2.
Ecol Lett ; 21(7): 968-977, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29687543

RESUMEN

Stomatal response to environmental conditions forms the backbone of all ecosystem and carbon cycle models, but is largely based on empirical relationships. Evolutionary theories of stomatal behaviour are critical for guarding against prediction errors of empirical models under future climates. Longstanding theory holds that stomata maximise fitness by acting to maintain constant marginal water use efficiency over a given time horizon, but a recent evolutionary theory proposes that stomata instead maximise carbon gain minus carbon costs/risk of hydraulic damage. Using data from 34 species that span global forest biomes, we find that the recent carbon-maximisation optimisation theory is widely supported, revealing that the evolution of stomatal regulation has not been primarily driven by attainment of constant marginal water use efficiency. Optimal control of stomata to manage hydraulic risk is likely to have significant consequences for ecosystem fluxes during drought, which is critical given projected intensification of the global hydrological cycle.


Asunto(s)
Sequías , Estomas de Plantas , Ecosistema , Estomas de Plantas/fisiología , Agua , Ciclo Hidrológico
3.
Front Plant Sci ; 15: 1355328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911972

RESUMEN

Tree species' ability to persist within their current distribution ranges is determined by seed germination and seedling growth. Exploring variation in these traits in relation to climatic conditions helps to understand and predict tree population dynamics, and to support species management and conservation under future climate. We analyzed seeds and seedlings of 26 European beech populations from the northeastern boundary of the species range to test whether: 1) adaptation to climatic conditions is reflected in depth of dormancy and germination of seeds; 2) climatic characteristics of origin predictably affect seedling traits. The variation in seed dormancy and germination in a laboratory test, and seedling growth and morphology traits in a nursery common-garden test was examined. Populations originating from warmer and drier sites (mostly from the northern region), compared to those from the opposite end of climatic gradient, germinated later, with a lower success, and produced seedlings with shorter and tougher roots. They had deeper dormancy and poorer seed germination capacity, and are likely more vulnerable to environmental changes. The climatic conditions at the origin shape the intraspecific variation of seed germination and seedling traits, and may limit regeneration from seed and affect adaptation potential of beech to increasing temperatures and decreasing precipitation.

4.
Tree Physiol ; 28(5): 729-42, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18316305

RESUMEN

Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.


Asunto(s)
Luz , Pinus taeda/efectos de la radiación , Pinus/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Nitrógeno/metabolismo , Fotosíntesis/efectos de la radiación , Pinus/crecimiento & desarrollo , Pinus/metabolismo , Pinus taeda/crecimiento & desarrollo , Pinus taeda/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo
5.
Tree Physiol ; 38(5): 721-734, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29300984

RESUMEN

The dormancy and the growth of trees in temperate climates are synchronized with seasons. Preparation for dormancy and its proper progression are key for survival and development in the next season. Using a unique approach that combined microscopy and proteomic methods, we investigated changes in Norway spruce (Picea abies (L.) H. Karst.) embryonic shoots during four distinct stages of dormancy in natural weather conditions. We identified 13 proteins that varied among dormancy stages, and were linked to regulation of protein level; functioning of chloroplasts and other plastids; DNA and RNA regulation; and oxidative stress. We also found a group of five proteins, related to cold hardiness, that did not differ in expression among stages of dormancy, but had the highest abundancy level. Ultrastructure of organelles is tightly linked to their metabolic activity, and hence may indicate dormancy status. The observed ultrastructure during endodormancy was stable, whereas during ecodormancy, the structural changes were dynamic and related mainly to nucleus, plastids and mitochondria. At the ultrastructural level, the lack of starch and the presence of callose in plasmodesmata in all regions of embryonic shoot were indicators of full endodormancy. At the initiation of ecodormancy, we noted an increase in metabolic activity of organelles, tissue-specific starch hyperaccumulation and degradation. However, in proteomic analysis, we did not find variation in expression of proteins related to starch degradation or to symplastic isolation of cells. The combination of ultrastructural and proteomic methods gave a more complete picture of vegetative bud dormancy than either of them applied separately. We found some changes at the structural level, but not their analogues in the proteome. Our study suggests a very important role of plastids' organization and metabolism, and their protection in the course of dormancy and during the shift from endo- to ecodormancy and the acquisition of growth competence.


Asunto(s)
Picea/fisiología , Proteínas de Plantas/genética , Proteoma , Tiempo (Meteorología) , Picea/crecimiento & desarrollo , Latencia en las Plantas , Proteínas de Plantas/metabolismo , Estaciones del Año
6.
PLoS One ; 12(10): e0185481, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29023453

RESUMEN

Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.


Asunto(s)
Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Ciclo Hidrológico , Agua/química , Cambio Climático , Ecosistema
7.
Tree Physiol ; 36(2): 252-66, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26786539

RESUMEN

Projections of future climates suggest that droughts (Ds) may become more frequent and severe in many regions. Genetic variation, especially within populations in traits related to D resistance, is poorly investigated in forest trees, but this knowledge is necessary to better understand how forests will respond to water shortages. In this study, we investigated variability among seven open-pollinated half-sib families of a single population and two population-level progenies of Norway spruce (Picea abies (L.) H. Karst.) in their gas exchange response to imposed D and xylem vulnerability to embolism. During their third growing season, saplings were subjected to three treatments-control (C), D (for 19 weeks) and broken drought (BD, 54 days without watering starting in mid-July, then well-watered). In response to D, all families reduced their stomatal conductance (gs) and light-saturated rates of photosynthesis (Amax) in a similar way. After rewatering, the xylem water potential (Ψ) recovered in the BD treatment, but gs and Amax remained lower than in C. Needle starch concentration was altered in both D treatments compared with C. Xylem of D-exposed trees was more vulnerable to embolism than in C. The minimum attained safety margin remained positive for all families, indicating that no catastrophic hydraulic failure occurred in stem xylem during D. Significant family variation was found for Ψ early in the D (midday Ψ between -1.2 and -1.8 MPa), and for needle damage, but not for sapling mortality. Family variation found at the initial stages of D, and not afterward, suggests that all families responded similarly to greater D intensity, exhibiting the species-specific response. Limited variation at the family level indicates that the response to D and the traits we examined were conservative within the species. This may limit breeding opportunities for increased D resistance in Norway spruce in light of expected climatic changes.


Asunto(s)
Sequías , Picea/fisiología , Árboles/fisiología , Agua/fisiología , Tallos de la Planta/fisiología , Madera/fisiología , Xilema/fisiología
8.
Tree Physiol ; 35(8): 879-93, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26116924

RESUMEN

Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade-tolerant broadleaves. The results of our study suggest that the combinations of plant attributes enhancing growth under high light vary with shade tolerance, but differ between leaf habit groups.


Asunto(s)
Plantones/crecimiento & desarrollo , Tracheophyta/crecimiento & desarrollo , Biomasa , Bosques , Luz , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Tallos de la Planta/efectos de la radiación , Plantones/fisiología , Plantones/efectos de la radiación , Tracheophyta/fisiología , Tracheophyta/efectos de la radiación , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA