Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Nanobiotechnology ; 20(1): 400, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064405

RESUMEN

BACKGROUND: Sepsis is caused mainly by infection in the blood with a broad range of bacterial species. It can be diagnosed by molecular diagnostics once compounds in the blood that interfere with molecular diagnostics are removed. However, this removal relies on ultracentrifugation. Immunomagnetic separation (IMS), which typically uses antibody-conjugated silica-coated magnetic nanoparticles (Ab-SiO2-MNPs), has been widely applied to isolate specific pathogens in various types of samples, such as food and environmental samples. However, its direct use in blood samples containing bacteria is limited due to the aggregation of SiO2-MNPs in the blood and inability to isolate multiple species of bacteria causing sepsis. RESULTS: In this study, we report the synthesis of vancomycin-conjugated polydopamine-coated (van-PDA-MNPs) enabling preconcentration of multiple bacterial species from blood without aggregation. The presence of PDA and van on MNPs was verified using transmission electron microscopy, X-ray photoelectron spectroscopy, and energy disruptive spectroscopy. Unlike van-SiO2-MNPs, van-PDA-MNPs did not aggregate in the blood. Van-PDA-MNPs were able to preconcentrate several species of Gram-positive bacteria in the blood, lowering the limit of detection (LOD) to 10 colony forming units/mL by polymerase chain reaction (PCR) and quantitative PCR (qPCR). This is 10 times more sensitive than the LOD obtained by PCR and qPCR using van-SiO2-MNPs. CONCLUSION: These results suggest that PDA-MNPs can avoid aggregation in blood and be conjugated with receptors, thereby improving the sensitivity of molecular diagnostics of bacteria in blood samples.


Asunto(s)
Nanopartículas de Magnetita , Sepsis , Bacterias , Bacterias Grampositivas , Humanos , Indoles , Nanopartículas de Magnetita/química , Patología Molecular , Polímeros , Dióxido de Silicio , Vancomicina/química
2.
Sensors (Basel) ; 21(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34960547

RESUMEN

Gravure printing, which is a roll-to-roll printed electronics system suitable for high-speed patterning of functional layers have advantages of being applied to flexible webs in large areas. As each of the printing procedure from inking to doctoring followed by ink transferring and setting influences the quality of the pattern geometry, it is necessary to detect and diagnose factors causing the printing defects beforehand. Data acquisition with three triaxial acceleration sensors for fault diagnosis of four major defects such as doctor blade tilting fault was obtained. To improve the diagnosis performances, optimal sensor selection with Sensor Data Efficiency Evaluation, sensitivity evaluation for axis selection with Directional Nature of Fault and feature variable optimization with Feature Combination Matrix method was applied on the raw data to form a Smart Data. Each phase carried out on the raw data progressively enhanced the diagnosis results in contents of accuracy, positive predictive value, diagnosis processing time, and data capacity. In the case of doctor blade tilting fault, the diagnosis accuracy increased from 48% to 97% with decreasing processing time of 3640 s to 16 s and the data capacity of 100 Mb to 5 Mb depending on the input data between raw data and Smart Data.

3.
J Nanosci Nanotechnol ; 14(2): 1303-17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24749427

RESUMEN

Roll-to-roll (R2R) gravure is considered one of the highest throughput tools for manufacturing inexpensive and flexible ubiquitous IT devices called "smart packaging" in which NFC (near-field communication) transponder, sensors, ADC (analog-to-digital converter), simple processor and signage are all integrated on paper or plastic foils. In this review, we show R2R gravure can be employed to print smart packaging, starting from printing simple electrodes, dielectrics, capacitors, diodes and thin film transistors with appropriate nanomaterial-based inks on plastic foils.


Asunto(s)
Electrónica/instrumentación , Membranas Artificiales , Nanoestructuras/química , Plásticos/química , Etiquetado de Productos/instrumentación , Embalaje de Productos/instrumentación , Dispositivo de Identificación por Radiofrecuencia , Conductividad Eléctrica , Diseño de Equipo , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Etiquetado de Productos/métodos , Embalaje de Productos/métodos
4.
Nano Lett ; 13(8): 3864-9, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23899052

RESUMEN

Fully printed transistors are a key component of ubiquitous flexible electronics. In this work, the advantages of an inverse gravure printing technique and the solution processing of semiconductor-enriched single-walled carbon nanotubes (SWNTs) are combined to fabricate fully printed thin-film transistors on mechanically flexible substrates. The fully printed transistors are configured in a top-gate device geometry and utilize silver metal electrodes and an inorganic/organic high-κ (~17) gate dielectric. The devices exhibit excellent performance for a fully printed process, with mobility and on/off current ratio of up to ~9 cm(2)/(V s) and 10(5), respectively. Extreme bendability is observed, without measurable change in the electrical performance down to a small radius of curvature of 1 mm. Given the high performance of the transistors, our high-throughput printing process serves as an enabling nanomanufacturing scheme for a wide range of large-area electronic applications based on carbon nanotube networks.

5.
Polymers (Basel) ; 16(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543449

RESUMEN

In fabricating functional layers, including thin-film transistors and conductive electrodes, using roll-to-roll (R2R) processing on polymer-based PET film, the instability of the slot-die coating meniscus under a high-speed web impedes functional layer formation with the desired thickness and width. The thickness profiles of the functional layers significantly impact the performance of the final products. In this study, we introduce an electrohydrodynamic (EHD)-based voltage application module to a slot-die coater to ensure the uniformity of the cross-machine direction (CMD) thickness profile within the functional layer and enable a stable, high-speed R2R process. The module can effectively control the spreadability of the meniscus by utilizing variations in the surface tension of the ink. The effectiveness of the EHD module was experimentally verified by applying a high voltage to a slot-die coater while keeping other process variables constant. As the applied voltage increases, the CMD thickness deviation reduces by 64.5%, and the production rate significantly increases (up to 300%), owing to the formation of a stable coated layer. The introduction of the EHD-based application module to the slot-die coater effectively controlled the spreadability of the meniscus, producing large-area functional layers.

6.
J Nanosci Nanotechnol ; 13(8): 5360-4, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23882764

RESUMEN

The manufacture of thin film transistors with reliable electrical properties, via full-printing on plastic foils, is a key step for the realization of costless and flexible electronics. To reach this goal, the dielectric layers should be smooth and free from failure while maintaining a high capacitance. In this paper, the parameters, affecting the film quality and capacitance of dielectric layers in a roll-to-roll gravure process, were investigated and some parameters were optimized.

7.
J Nanosci Nanotechnol ; 13(8): 5620-3, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23882805

RESUMEN

Stretchable electronics may open new applications in display, sensors and actuators. To attain the stretchable electronics, the ink formulation should be compatible with elastomeric substrates. Here, we present the formulation of silver nanoparticles and single walled carbon nanotubes (SWNTs) for printing stretchable silver electrodes on the elastomeric substrates. Highly conductive stretchable electrodes can be printed directly on the poly(styrene-b-butadiene-b-styrene) (PSBS) substrates by roll to plate (R2P) gravure printer. During the stretching test, R2P printed silver based stretchable electrodes show the high conductivity of 1000 S cm(-1) at 0.27 wt% of SWNT loading. Furthermore, the resistance of the printed silver electrode was not changed up to 15% of tensile strain.

8.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985902

RESUMEN

Roll-to-roll gravure (R2Rg) has become highly affiliated with printed electronics in the past few years due to its high yield of printed thin-film transistor (TFT) in active matrix devices, and to its low cost. For printing TFTs with multilayer structures, achieving a high-precision in overlay printing registration accuracy (OPRA) is a key challenge to attain the high degree of TFT integration through R2Rg. To address this challenge efficiently, a digital twin paradigm was first introduced in the R2Rg system with an aim to optimize the OPRA by developing a predictive model based on typical input variables such as web tension, nip force, and printing speed in the R2Rg system. In our introductory-level digital twin, errors in the OPRA were collected with the variable parameters of web tensions, nip forces, and printing speeds from several R2Rg printing processes. Subsequently, statistical features were extracted from the input data followed by the training of a deep learning long-short term memory (LSTM) model for predicting machine directional error (MD) in the OPRA. As a result of training the LSTM model in our digital twin, its attained accuracy of prediction was 77%. Based on this result, we studied the relationship between the nip forces and printing speeds to predict the MD error in the OPRA. The results indicated a correlation between the MD error in the OPRA and the printing speed, as the MD error amplitude in the OPRA tended to decline at the higher printing speed.

9.
Mater Today Bio ; 23: 100838, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38033369

RESUMEN

Polymer-based lab-on-a-disc (LoaD) devices for isolating ribonucleic acid (RNA) from whole blood samples have gained considerable attention for accurate biomedical analysis and point-of-care diagnostics. However, the mass production of these devices remains challenging in manufacturing cost and sustainability, primarily due to the utilization of a laser cutter or router computer numerical control (CNC) machine for engraving and cutting plastics in the conventional prototyping process. Herein, we reported the first energy-efficient room-temperature printing-imprinting integrated roll-to-roll manufacturing platform for mass production of a polydimethylsiloxane (PDMS)-based LoaD to on-site isolate ribonucleic acid (RNA) from undiluted blood samples. We significantly reduced energy consumption and eliminated thermal expansion variations between the mold, substrate, and resists by accelerating the PDMS curing time to less than 10 min at room temperature without using heat or ultraviolet radiation. The additive manufacturing technology was applied to fabricate a multi-depth flexible polymer mold that integrated macro (2 mm) and micro-sized (500 µm) features, which overcomes the economic and environmental challenges of conventional molding techniques. Our integrated R2R platform was enabled to print adhesion-promoting films at the first printing unit and continuously in-line imprint with a high replication accuracy (99%) for high-volume manufacturing of a new centrifugal microfluidic chip with an enhancement of mixing performance by integrating an efficient mixing chamber and serpentine micromixer. This research paved the way for scalable green manufacturing of large-volume polymer-based microfluidic devices, often required in real-world sample-driven analytical systems for clinical bioanalysis.

10.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770520

RESUMEN

Single-walled carbon nanotubes (SWCNTs) have an advantage in printing thin film transistors (TFTs) due to their high carrier mobility, excellent chemical stability, mechanical flexibility, and compatibility with solution-based processing. Thus, the printed SWCNT-based TFTs (pSWCNT-TFTs) showed significant technological potential such as integrated circuits, conformable sensors, and display backplanes. However, the long-term environmental stability of the pSWCNT-TFTs hinders their commercialization. Thus, to extend the stability of the pSWCNT-TFTs, such devices should be passivated with low water and oxygen permeability. Herein, we introduced the silicon nitride (SiNx) passivation method on the pSWCNT-TFTs via a combination of roll-to-roll (R2R) gravure and the roll-to-roll plasma-enhanced vapor deposition (R2R-PECVD) process at low temperature (45 °C). We found that SiNx-passivated pSWCNT-TFTs showed ± 0.50 V of threshold voltage change at room temperature for 3 days and ±1.2 V of threshold voltage change for 3 h through a Temperature Humidity Test (85/85 test: Humidity 85%/Temperature 85 °C) for both p-type and n-type pSWCNT-TFTs. In addition, we found that the SiNx-passivated p-type and n-type pSWCNT-TFT-based CMOS-like ring oscillator, or 1-bit code generator, operated well after the 85/85 test for 24 h.

11.
Nanomaterials (Basel) ; 13(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36770552

RESUMEN

The roll-to-roll (R2R) gravure process has the potential for manufacturing single-wall carbon nanotubes (SWCNT)-based thin film transistor (TFT) arrays on a flexible plastic substrate. A significant hurdle toward the commercialization of the R2R-printed SWCNT-TFT array is the lack of a suitable, simple, and rapid method for measuring the uniformity of printed products. We developed a probing instrument for characterizing R2R gravure printed TFT, named PICR2R-TFT, for rapidly characterizing R2R-printed SWCNT-TFT array that can present a geographical distribution profile to pinpoint the failed devices in an SWCNT-TFT array. Using the newly developed PICR2R-TFT instrument, the current-voltage characteristics of the fabricated SWCNT-TFT devices could be correlated to various R2R-printing process parameters, such as channel length, roll printing length, and printing speed. Thus, by introducing a characterization tool that is reliable and fast, one can quickly optimize the R2R gravure printing conditions to enhance product uniformity, thereby maximizing the yield of printed SWCNT-TFT arrays.

12.
Nanoscale Adv ; 5(15): 3879-3886, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37496628

RESUMEN

Charge carrier polarity tuning in printed thin film transistors (TFTs) is a crucial step in order to obtain complementary printed devices. In this work, we studied the effect of an Al2O3 passivation layer on printed single-walled carbon nanotube (SWCNT) based TFTs to tune the charge carrier polarity. By varying the atomic layer deposition (ALD) temperature and Al2O3 layer thickness, we can tune the doping degree of Al2O3 to tailor the polarity of printed SWCNT-based TFTs (SWCNT-TFTs). The precise control of threshold voltage (Vth) and polarity from p-type to well-balanced ambipolar, and n-type SWCNT-TFTs is successfully demonstrated with high repeatability by optimizing the ALD temperature and Al2O3 layer thickness based on 20 printed samples per test. As a proof-of-concept, inverter logic circuits using the SWCNT-TFT with different polarity types are demonstrated. The ambipolar device-based inverter exhibits a voltage gain of 3.9 and the CMOS-based inverter exhibits a gain of approximately 4.3, which is comparable to the current roll-to-roll (R2R) printed inverter circuits. Different thicknesses of Al2O3 layer, coated by the ALD at different temperatures and thicknesses, provide a deep understanding of the device fabrication and control process to implement the tailored doping method to efficiently realize R2R printed SWCNT-TFT-based complementary electronic devices.

13.
Adv Sci (Weinh) ; 10(28): e2302072, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37587764

RESUMEN

The COVID-19 outbreak has caused public and global health crises. However, the lack of on-site fast, reliable, sensitive, and low-cost reverse transcription polymerase chain reaction (RT-PCR) testing limits early detection, timely isolation, and epidemic prevention and control. Here, the authors report a rapid mobile efficient diagnostics of infectious diseases via on-chip -RT-quantitative PCR (RT-qPCR): MEDIC-PCR. First, the authors use a roll-to-roll printing process to accomplish low-cost carbon-black-based disposable PCR chips that enable rapid LED-induced photothermal PCR cycles. The MEDIC-PCR can perform RT (3 min), and PCR (9 min) steps. Further, the cohort of 89 COVID-19 and 103 non-COVID-19 patients testing is completed by the MEDIC-PCR to show excellent diagnostic accuracy of 97%, sensitivity of 94%, and specificity of 98%. This MEDIC-PCR can contribute to the preventive global health in the face of a future pandemic.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , COVID-19/diagnóstico , Sensibilidad y Especificidad , Reacción en Cadena de la Polimerasa , Enfermedades Transmisibles/diagnóstico , Prueba de COVID-19
14.
Nanotechnology ; 23(34): 344006, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22885995

RESUMEN

Wireless power transmission to inexpensive and disposable smart electronic devices is one of the key issues for the realization of a ubiquitous society where sensor networks such as RFID tags, price tags, smart logos, signage and sensors could be fully interconnected and utilized by DC power of less than 0.3 W. This DC power can be provided by inductively coupled AC from a 13.56 MHz power transmitter through a rectenna, consisting of an antenna, a diode and a capacitor, which would be cheap to integrate with inexpensive smart electronic devices. To integrate the rectenna with a minimum cost, a roll-to-roll (R2R) gravure printing process has been considered to print the rectenna on plastic foils. In this paper, R2R gravure printing systems including printing condition and four different nanoparticle based inks will be reported to print the rectenna (antenna, diode and capacitor) on plastic foils at a printing speed of 8 m min(-1) and more than 90% device yield for a wireless power transmission of 0.3 W using a standard 13.56 MHz power transmitter.

15.
J Nanosci Nanotechnol ; 12(5): 4261-4, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22852386

RESUMEN

We have studied the fabrication of Single Walled Carbon Nanotube (SWNT)-based Thin Film Transistors (TFTs) using Roll-to-Roll (R2R) gravure printer and inkjet printer on PET foils to show the possibility of printed electronics in point of mass production and low cost. In this paper, for realization of all printed multi-bits digital circuit, all printed positive-edge triggered master-slave D flip-flop (DFF) was fabricated on PET foil using printed SWNT TFTs. The printed DFF, consists of 8 NAND gates and 4 inverters, exhibit propagation delay of 75 ms at the input clock signal of 5 Hz.

16.
Nano Lett ; 11(8): 3425-30, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21774501

RESUMEN

A high-throughput process for nanotexturing of hard and soft surfaces based on the roll-to-roll anodization and etching of low-cost aluminum foils is presented. The process enables the precise control of surface topography, feature size, and shape over large areas thereby presenting a highly versatile platform for fabricating substrates with user-defined, functional performance. Specifically, the optical and surface wetting properties of the foil substrates were systematically characterized and tuned through the modulation of the surface texture. In addition, textured aluminum foils with pore and bowl surface features were used as zeptoliter reaction vessels for the well-controlled synthesis of inorganic, organic, and plasmonic nanomaterials, demonstrating yet another powerful potential use of the presented approach.

17.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35957030

RESUMEN

The uneven deposition at the edges of an evaporating droplet, termed the coffee-ring effect, has been extensively studied during the past few decades to better understand the underlying cause, namely the flow dynamics, and the subsequent patterns formed after drying. The non-uniform evaporation rate across the colloidal droplet hampers the formation of a uniform and homogeneous film in printed electronics, rechargeable batteries, etc., and often causes device failures. This review aims to highlight the diverse range of techniques used to alleviate the coffee-ring effect, from classic methods such as adding chemical additives, applying external sources, and manipulating geometrical configurations to recently developed advancements, specifically using bubbles, humidity, confined systems, etc., which do not involve modification of surface, particle or liquid properties. Each of these methodologies mitigates the edge deposition via multi-body interactions, for example, particle-liquid, particle-particle, particle-solid interfaces and particle-flow interactions. The mechanisms behind each of these approaches help to find methods to inhibit the non-uniform film formation, and the corresponding applications have been discussed together with a critical comparison in detail. This review could pave the way for developing inks and processes to apply in functional coatings and printed electronic devices with improved efficiency and device yield.

18.
Nanomaterials (Basel) ; 12(6)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35335827

RESUMEN

Recently, slot-die coating based on the roll-to-roll process has been actively used to fabricate nanoparticle-based electrolyte layers because it is advantageous for high-speed processes and mass production of uniformly thick electrolyte layers. In this process, the fabricated electrolyte layer is stored as a wound roll throughout the rewinding process. We analyzed the defects and geometric changes in an electrolyte layer, i.e., gadolinium-doped cerium oxide (GDC), due to the radial stress in the wound roll. We found that the thickness of the coated layer could be decreased by increasing the radial stress, i.e., cracks can be generated in the coated layer if excessively high radial stress is applied to the wound-coated layer. More thickness changes and crack defects were generated with time due to the residual stress in the wound roll. Finally, we analyzed the effects of taper tension profiles on the defects of the coated layer in the wound roll and determined the taper tension profile to minimize defects.

19.
Polymers (Basel) ; 14(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35746091

RESUMEN

Unpredictable web temperature distributions in the dryer and strain deviations in the cross-machine (CMD) and machine (MD) directions could hamper the manufacture of smooth functional layers on polymer-based webs through the roll-to-roll (R2R) continuous process system. However, research on this topic is limited. In this study, we developed a structural analysis model using the temperature distribution of the web as a boundary condition to analyze the drying mechanism of the dryer used in an R2R system. Based on the results of this model, we then applied structural modifications to the flow channel and hole density of the aluminum plate of the dryer. The model successfully predicted the temperature and strain distributions of the web inside the dryer in the CMD and MD by forming a tension according to the speed difference of the driven rolls at both ends of the span. Our structural improvements significantly reduced the temperature deviation of the moving web inside the dryer by up to 74% and decreased the strain deviation by up to 46%. The findings can help prevent web unevenness during the drying process of the R2R system, which is essential to minimize the formation of defects on functional layers built over polymer-based webs.

20.
Micromachines (Basel) ; 13(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36014138

RESUMEN

Lab-on-a-CD (LOCD) is gaining importance as a diagnostic platform due to being low-cost, easy-to-use, and portable. During LOCD usage, mixing and reaction are two processes that play an essential role in biochemical applications such as point-of-care diagnosis. In this paper, we numerically and experimentally investigate the effects of the Coriolis and Euler forces in the mixing chamber during the acceleration and deceleration of a rotating disk. The mixing performance is investigated under various conditions that have not been reported, such as rotational condition, chamber aspect ratio at a constant volume, and obstacle arrangement in the chamber. During disk acceleration and deceleration, the Euler force difference in the radial direction causes rotating flows, while the Coriolis force induces perpendicular vortices. Increasing the maximum rotational velocity improves the maximum rotational displacement, resulting in better mixing performance. A longer rotational period increases the interfacial area between solutions and enhances mixing. Mixing performance also improves when there is a substantial difference between Euler forces at the inner and outer radii. Furthermore, adding obstacles in the angular direction also passively promotes or inhibits mixing by configuration. This quantitative investigation provides valuable information for designing and developing high throughput and multiplexed point-of-care LOCDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA