Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(23): e2308815, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38161254

RESUMEN

Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.


Asunto(s)
Encéfalo , Diferenciación Celular , Matriz Extracelular , Laminina , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/química , Encéfalo/metabolismo , Animales , Neuronas/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Porcinos , Astrocitos/metabolismo , Microglía/metabolismo , Inflamación/patología
2.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293070

RESUMEN

Degeneration of the intervertebral disc (IVD) is a major contributor to low back pain (LBP). IVD degeneration is characterized by abnormal production of inflammatory cytokines secreted by IVD cells. Although the underlying molecular mechanisms of LBP have not been elucidated, increasing evidence suggests that LBP is associated particularly with microglia in IVD tissues and the peridiscal space, aggravating the cascade of degenerative events. In this study, we implemented our microfluidic chemotaxis platform to investigate microglial inflammation in response to our reconstituted degenerative IVD models. The IVD models were constructed by stimulating human nucleus pulposus (NP) cells with interleukin-1ß and producing interleukin-6 (129.93 folds), interleukin-8 (18.31 folds), C-C motif chemokine ligand-2 (CCL-2) (6.12 folds), and CCL-5 (5.68 folds). We measured microglial chemotaxis (p < 0.05) toward the conditioned media of the IVD models. In addition, we observed considerable activation of neurodegenerative and deactivation of protective microglia via upregulated expression of CD11b (p < 0.001) and down-regulation of CD206 protein (p < 0.001) by soluble factors from IVD models. This, in turn, enhances the inflammatory milieu in IVD tissues, causing matrix degradation and cellular damage. Our findings indicate that degenerative IVD may induce degenerative microglial proinflammation, leading to LBP development.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Dolor de la Región Lumbar , Humanos , Microglía/metabolismo , Interleucina-1beta/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Interleucina-8/metabolismo , Medios de Cultivo Condicionados/metabolismo , Interleucina-6/metabolismo , Ligandos , Disco Intervertebral/metabolismo , Citocinas/metabolismo
3.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203256

RESUMEN

Porphyromonas gingivalis is a gram-negative bacterium found in the human oral cavity and is responsible for the development of chronic periodontitis as well as neurological diseases, including Alzheimer's disease (AD). Given the significance of the roles of P. gingivalis in AD pathogenesis, it is critical to understand the underlying mechanisms of P. gingivalis-driven neuroinflammation and their contribution to neurodegeneration. Herein, we hypothesize that P. gingivalis produces secondary metabolites that may cause neurodegeneration through direct or indirect pathways mediated by microglia. To test our hypothesis, we treated human neural cells with bacterial conditioned media on our brain platforms and assessed microgliosis, astrogliosis and neurodegeneration. We found that bacteria-mediated microgliosis induced the production of nitric oxide, which causes neurodegeneration assessed with high pTau level. Our study demonstrated the elevation of detrimental protein mediators, CD86 and iNOS and the production of several pro-inflammatory markers from stimulated microglia. Through inhibition of LPS and succinate dehydrogenase in a bacterial conditioned medium, we showed a decrease in neurodegenerative microgliosis. In addition, we demonstrated the bidirectional effect of microgliosis and astrogliosis on each other exacerbating neurodegeneration. Overall, our study suggests that the mouth-brain axis may contribute to the pathogenesis of AD.


Asunto(s)
Enfermedades Neurodegenerativas/microbiología , Porphyromonas gingivalis/patogenicidad , Enfermedad de Alzheimer/microbiología , Humanos , Microglía/metabolismo
4.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562136

RESUMEN

Nanoparticle (NP)-assisted procedures including laser tissue soldering (LTS) offer advantages compared to conventional microsuturing, especially in the brain. In this study, effects of polymer-coated silica NPs used in LTS were investigated in human brain endothelial cells (ECs) and blood-brain barrier models. In the co-culture setting with ECs and pericytes, only the cell type directly exposed to NPs displayed a time-dependent internalization. No transfer of NPs between the two cell types was observed. Cell viability was decreased relatively to NP exposure duration and concentration. Protein expression of the nuclear factor ĸ-light-chain-enhancer of activated B cells and various endothelial adhesion molecules indicated no initiation of inflammation or activation of ECs after NP exposure. Differentiation of CD34+ ECs into brain-like ECs co-cultured with pericytes, blood-brain barrier (BBB) characteristics were obtained. The established endothelial layer reduced the passage of integrity tracer molecules. NP exposure did not result in alterations of junctional proteins, BBB formation or its integrity. In a 3-dimensional setup with an endothelial tube formation and tight junctions, barrier formation was not disrupted by the NPs and NPs do not seem to cross the blood-brain barrier. Our findings suggest that these polymer-coated silica NPs do not damage the BBB.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Revascularización Cerebral/métodos , Células Endoteliales/metabolismo , Nanopartículas/metabolismo , Polímeros/farmacología , Dióxido de Silicio/farmacología , Animales , Linfocitos B/inmunología , Transporte Biológico/fisiología , Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/citología , Encéfalo/metabolismo , Bovinos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Terapia por Láser/métodos , Activación de Linfocitos/inmunología , FN-kappa B/metabolismo , Pericitos/metabolismo
5.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339351

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia, typically showing progressive neurodegeneration in aging brains. The key signatures of the AD progression are the deposition of amyloid-beta (Aß) peptides, the formation of tau tangles, and the induction of detrimental neuroinflammation leading to neuronal loss. However, conventional pharmacotherapeutic options are merely relying on the alleviation of symptoms that are limited to mild to moderate AD patients. Moreover, some of these medicines discontinued to use due to either the insignificant effectiveness in improving the cognitive impairment or the adverse side effects worsening essential bodily functions. One of the reasons for the failure is the lack of knowledge on the underlying mechanisms that can accurately explain the major causes of the AD progression correlating to the severity of AD. Therefore, there is an urgent need for the better understanding of AD pathogenesis and the development of the disease-modifying treatments, particularly for severe and late-onset AD, which have not been covered thoroughly. Here, we review the underlying mechanisms of AD progression, which have been employed for the currently established therapeutic strategies. We believe this will further spur the discovery of a novel disease-modifying treatment for mild to severe, as well as early- to late-onset, AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Humanos , Factores de Crecimiento Nervioso/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Nootrópicos/uso terapéutico , Proteínas tau/metabolismo
6.
Anal Chem ; 90(5): 3253-3261, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29431425

RESUMEN

Angiogenesis is critical for tumor progression and metastasis, and it progresses through orchestral multicellular interactions. Thus, there is urgent demand for high-throughput tumor angiogenesis assays for concurrent examination of multiple factors. For investigating tumor angiogenesis, we developed a microfluidic droplet array-based cell-coculture system comprising a two-layer polydimethylsiloxane chip featuring 6 × 9 paired-well arrays and an automated droplet-manipulation device. In each droplet-pair unit, tumor cells were cultured in 3D in one droplet by mixing cell suspensions with Matrigel, and in the other droplet, human umbilical vein endothelial cells (HUVECs) were cultured in 2D. Droplets were fused by a newly developed fusion method, and tumor angiogenesis was assayed by coculturing tumor cells and HUVECs in the fused droplet units. The 3D-cultured tumor cells formed aggregates harboring a hypoxic center-as observed in vivo-and secreted more vascular endothelial growth factor (VEGF) and more strongly induced HUVEC tubule formation than did 2D-cultured tumor cells. Our single array supported 54 assays in parallel. The angiogenic potentials of distinct tumor cells and their differential responses to antiangiogenesis agent, Fingolimod, could be investigated without mutual interference in a single array. Our droplet-based assay is convenient to evaluate multicellular interaction in high throughput in the context of tumor sprouting angiogenesis, and we envision that the assay can be extensively implementable for studying other cell-cell interactions.


Asunto(s)
Comunicación Celular/fisiología , Técnicas de Cocultivo/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Neovascularización Patológica/fisiopatología , Inhibidores de la Angiogénesis/farmacología , Animales , Comunicación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Endoteliales , Clorhidrato de Fingolimod/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microfluídica/métodos , Neovascularización Patológica/tratamiento farmacológico , Ratas
7.
J Biol Chem ; 290(4): 1966-78, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25468905

RESUMEN

Interfering with the assembly of Amyloid ß (Aß) peptides from monomer to oligomeric species and fibrils or promoting their clearance from the brain are targets of anti-Aß-directed therapies in Alzheimer disease. Here we demonstrate that cromolyn sodium (disodium cromoglycate), a Food and Drug Administration-approved drug already in use for the treatment of asthma, efficiently inhibits the aggregation of Aß monomers into higher-order oligomers and fibrils in vitro without affecting Aß production. In vivo, the levels of soluble Aß are decreased by over 50% after only 1 week of daily intraperitoneally administered cromolyn sodium. Additional in vivo microdialysis studies also show that this compound decreases the half-life of soluble Aß in the brain. These data suggest a clear effect of a peripherally administered, Food and Drug Administration-approved medication on Aß economy, supporting further investigation of the potential long-term efficacy of cromolyn sodium in Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Cromolin Sódico/farmacología , Aprobación de Drogas , Fragmentos de Péptidos/metabolismo , Animales , Células Cultivadas , Cromolin Sódico/química , Modelos Animales de Enfermedad , Flavonoides/química , Flavonoles , Humanos , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microscopía Electrónica de Transmisión , Estados Unidos , United States Food and Drug Administration
8.
Langmuir ; 31(48): 13165-71, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26545155

RESUMEN

Cell-adhesive particles are of significant interest in biotechnology, the bioengineering of complex tissues, and biomedical research. Their applications range from platforms to increase the efficiency of anchorage-dependent cell culture to building blocks to loading cells in heterogeneous structures to clonal-population growth monitoring to cell sorting. Although useful, currently available cell-adhesive particles can accommodate only homogeneous cell culture. Here, we report the design of anisotropic hydrogel microparticles with tunable cell-adhesive regions as first step toward micropatterned cell cultures on particles. We employed stop flow lithography (SFL), the coupling reaction between amine and N-hydroxysuccinimide (NHS) and streptavidin-biotin chemistry to adjust the localization of conjugated collagen and poly-L-lysine on the surface of microscale particles. Using the new particles, we demonstrate the attachment and formation of tight junctions between brain endothelial cells. We also demonstrate the geometric patterning of breast cancer cells on particles with heterogeneous collagen coatings. This new approach avoids the exposure of cells to potentially toxic photoinitiators and ultraviolet light and decouples in time the microparticle synthesis and the cell culture steps to take advantage of the most recent advances in cell patterning available for traditional culture substrates.


Asunto(s)
Biotina/química , Estreptavidina/química , Anisotropía , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Succinimidas/química
9.
Sci Rep ; 14(1): 744, 2024 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185738

RESUMEN

Aluminum oxide nanoparticle (AlNP), a ubiquitous neurotoxin highly enriched in air pollution, is often produced as an inevitable byproduct in the manufacturing of industrial products such as cosmetics and metal materials. Meanwhile, ALNP has emerged as a significant public health concern due to its potential association with neurological diseases. However, the studies about the neurotoxic effects of AlNP are limited, partially due to the lack of physiologically relevant human neurovascular unit with innate immunity (hNVUI). Here, we employed our AlNP-treated hNVUI model to investigate the underlying mechanism of AlNP-driven neurodegeneration. First, we validated the penetration of AlNP across a blood-brain barrier (BBB) compartment and found AlNP-derived endothelial cellular senescence through the p16 and p53/p21 pathways. Our study showed that BBB-penetrating AlNP promoted reactive astrocytes, which produced a significant level of reactive oxygen species (ROS). The astrocytic neurotoxic factors caused neuronal damage, including the synaptic impairment, the accumulation of phosphoric-tau proteins, and even neuronal death. Our study suggests that AlNP could be a potential environmental risk factor of neurological disorders mediated by neuroinflammation.


Asunto(s)
Contaminación del Aire , Síndromes de Neurotoxicidad , Humanos , Óxido de Aluminio/toxicidad , Barrera Hematoencefálica , Muerte Celular , Senescencia Celular
10.
Adv Sci (Weinh) ; 11(15): e2305326, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342616

RESUMEN

Botulinum neurotoxin serotype A (BoNT/A) is widely used in therapeutics and cosmetics. The effects of multi-dosed BoNT/A treatment are well documented on the peripheral nervous system (PNS), but much less is known on the central nervous system (CNS). Here, the mechanism of multi-dosed BoNT/A leading to CNS neurodegeneration is explored by using the 3D human neuron-glia model. BoNT/A treatment reduces acetylcholine, triggers astrocytic transforming growth factor beta, and upregulates C1q, C3, and C5 expression, inducing microglial proinflammation. The disintegration of the neuronal microtubules is escorted by microglial nitric oxide, interleukin 1ß, tumor necrosis factor α, and interleukin 8. The microglial proinflammation eventually causes synaptic impairment, phosphorylated tau (pTau) aggregation, and the loss of the BoNT/A-treated neurons. Taking a more holistic approach, the model will allow to assess therapeutics for the CNS neurodegeneration under the prolonged use of BoNT/A.


Asunto(s)
Microglía , Neuronas , Humanos , Microglía/metabolismo , Astrocitos
11.
Adv Sci (Weinh) ; 11(20): e2304357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482922

RESUMEN

Microglial neuroinflammation appears to be neuroprotective in the early pathological stage, yet neurotoxic, which often precedes neurodegeneration in Alzheimer's disease (AD). However, it remains unclear how the microglial activities transit to the neurotoxic state during AD progression, due to complex neuron-glia interactions. Here, the mechanism of detrimental microgliosis in AD by employing 3D human AD mini-brains, brain tissues of AD patients, and 5XFAD mice is explored. In the human and animal AD models, amyloid-beta (Aß)-overexpressing neurons and reactive astrocytes produce interferon-gamma (IFNγ) and excessive oxidative stress. IFNγ results in the downregulation of mitogen-activated protein kinase (MAPK) and the upregulation of Kelch-like ECH-associated Protein 1 (Keap1) in microglia, which inactivate nuclear factor erythroid-2-related factor 2 (Nrf2) and sensitize microglia to the oxidative stress and induces a proinflammatory microglia via nuclear factor kappa B (NFκB)-axis. The proinflammatory microglia in turn produce neurotoxic nitric oxide and proinflammatory mediators exacerbating synaptic impairment, phosphorylated-tau accumulation, and discernable neuronal loss. Interestingly, recovering Nrf2 in the microglia prevents the activation of proinflammatory microglia and significantly blocks the tauopathy in AD minibrains. Taken together, it is envisioned that IFNγ-driven Nrf2 downregulation in microglia as a key target to ameliorate AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Interferón gamma , Microglía , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Microglía/metabolismo , Humanos , Ratones , Interferón gamma/metabolismo , Ratones Transgénicos
12.
Lab Chip ; 23(5): 964-981, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36644973

RESUMEN

Neurological disorders in the central nervous system (CNS) are progressive and irreversible diseases leading to devastating impacts on patients' life as they cause cognitive impairment, dementia, and even loss of essential body functions. The development of effective medicines curing CNS disorders is, however, one of the most ambitious challenges due to the extremely complex functions and structures of the human brain. In this regard, there are unmet needs to develop simplified but physiopathologically-relevant brain models. Recent advances in the microfluidic techniques allow multicellular culture forming miniaturized 3D human brains by aligning parts of brain regions with specific cells serving suitable functions. In this review, we overview designs and strategies of microfluidics-based human mini-brains for reconstituting CNS disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), vascular dementia (VD), and environmental risk factor-driven dementia (ERFD). Afterward, the applications of the mini-brains in the area of medical science are introduced in terms of the clarification of pathogenic mechanisms and identification of promising biomarkers. We also present expanded model systems ranging from the CNS to CNS-connecting organ axes to study the entry pathways of pathological risk factors into the brain. Lastly, the advantages and potential challenges of current model systems are addressed with future perspectives.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Enfermedades del Sistema Nervioso Central , Humanos , Encéfalo , Modelos Biológicos
13.
Biosensors (Basel) ; 13(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36831997

RESUMEN

The evolution of preclinical in vitro cancer models has led to the emergence of human cancer-on-chip or microphysiological analysis platforms (MAPs). Although it has numerous advantages compared to other models, cancer-on-chip technology still faces several challenges such as the complexity of the tumor microenvironment and integrating multiple organs to be widely accepted in cancer research and therapeutics. In this review, we highlight the advancements in cancer-on-chip technology in recapitulating the vital biological features of various cancer types and their applications in life sciences and high-throughput drug screening. We present advances in reconstituting the tumor microenvironment and modeling cancer stages in breast, brain, and other types of cancer. We also discuss the relevance of MAPs in cancer modeling and precision medicine such as effect of flow on cancer growth and the short culture period compared to clinics. The advanced MAPs provide high-throughput platforms with integrated biosensors to monitor real-time cellular responses applied in drug development. We envision that the integrated cancer MAPs has a promising future with regard to cancer research, including cancer biology, drug discovery, and personalized medicine.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Neoplasias , Humanos , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Descubrimiento de Drogas , Dispositivos Laboratorio en un Chip , Microambiente Tumoral
14.
ACS Appl Mater Interfaces ; 15(35): 41708-41719, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37621110

RESUMEN

The sp-hybridized carbon network in single- or few-layer γ-graphyne (γ-GY) has a polarized electron distribution, which can be crucial in overcoming biosafety issues. Here, we report the low-temperature synthesis, electronic properties, and amyloid fibril nanostructures of electrostatic few-layer γ-GY. ABC stacked γ-GY is synthesized by layer-by-layer growth on a catalytic copper surface, exhibiting intrinsic p-type semiconducting properties in few-layer γ-GY. Thickness-dependent electronic properties of γ-GY elucidate interlayer interactions by electron doping between electrostatic layers and layer stacking-involved modulation of the band gap. Electrostatic few-layer γ-GY induces high electronic sensitivity and intense interaction with amyloid beta (i.e., Aß40) peptides assembling into elongated mature Aß40 fibrils. Two-dimensional biocompatible nanostructures of Aß40 fibrils/few-layer γ-GY enable excellent cell viability and high neuronal differentiation of living cells without external stimulation.


Asunto(s)
Péptidos beta-Amiloides , Carbono , Temperatura , Catálisis , Supervivencia Celular
15.
Nat Protoc ; 18(9): 2838-2867, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37542184

RESUMEN

Neuroinflammation has either beneficial or detrimental effects, depending on risk factors and neuron-glia interactions in neurological disorders. However, studying neuroinflammation has been challenging due to the complexity of cell-cell interactions and lack of physio-pathologically relevant neuroinflammatory models. Here, we describe our three-dimensional microfluidic multicellular human neural culture model, referred to as a 'brain-on-a-chip' (BoC). This elucidates neuron-glia interactions in a controlled manner and recapitulates pathological signatures of the major neurological disorders: dementia, brain tumor and brain edema. This platform includes a chemotaxis module offering a week-long, stable chemo-gradient compared with the few hours in other chemotaxis models. Additionally, compared with conventional brain models cultured with mixed phenotypes of microglia, our BoC can separate the disease-associated microglia out of heterogeneous population and allow selective neuro-glial engagement in three dimensions. This provides benefits of interpreting the neuro-glia interactions while revealing that the prominent activation of innate immune cells is the risk factor leading to synaptic impairment and neuronal loss, validated in our BoC models of disorders. This protocol describes how to fabricate and implement our human BoC, manipulate in real time and perform end-point analyses. It takes 2 d to set up the device and cell preparations, 1-9 weeks to develop brain models under disease conditions and 2-3 d to carry out analyses. This protocol requires at least 1 month training for researchers with basic molecular biology techniques. Taken together, our human BoCs serve as reliable and valuable platforms to investigate pathological mechanisms involving neuroinflammation and to assess therapeutic strategies modulating neuroinflammation in neurological disorders.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Humanos , Dispositivos Laboratorio en un Chip , Enfermedades Neuroinflamatorias/patología , Técnicas de Cultivo de Célula , Enfermedades Neurodegenerativas/patología
16.
ACS Nano ; 17(15): 14678-14685, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490514

RESUMEN

The imaging of microscopic biological samples faces numerous difficulties due to their small feature sizes and low-amplitude contrast. Metalenses have shown great promise in bioimaging as they have access to the complete complex information, which, alongside their extremely small and compact footprint and potential to integrate multiple functionalities into a single device, allow for miniaturized microscopy with exceptional features. Here, we design and experimentally realize a dual-mode metalens integrated with a liquid crystal cell that can be electrically switched between bright-field and edge-enhanced imaging on the millisecond scale. We combine the concepts of geometric and propagation phase to design the dual-mode metalens and physically encode the required phase profiles using hydrogenated amorphous silicon for operation at visible wavelengths. The two distinct metalens phase profiles include (1) a conventional hyperbolic metalens for bright-field imaging and (2) a spiral metalens with a topological charge of +1 for edge-enhanced imaging. We demonstrate the focusing and vortex generation ability of the metalens under different states of circular polarization and prove its use for biological imaging. This work proves a method for in vivo observation and monitoring of the cell response and drug screening within a compact form factor.

17.
Biomater Res ; 27(1): 71, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468961

RESUMEN

BACKGROUND: Glial scar formation is a reactive glial response confining injured regions in a central nervous system. However, it remains challenging to identify key factors formulating glial scar in response to glioblastoma (GBM) due to complex glia-GBM crosstalk. METHODS: Here, we constructed an astrocytic scar enclosing GBM in a human assembloid and a mouse xenograft model. GBM spheroids were preformed and then co-cultured with microglia and astrocytes in 3D Matrigel. For the xenograft model, U87-MG cells were subcutaneously injected to the Balb/C nude female mice. RESULTS: Additional glutamate was released from GBM-microglia assembloid by 3.2-folds compared to GBM alone. The glutamate upregulated astrocytic monoamine oxidase-B (MAO-B) activity and chondroitin sulfate proteoglycans (CSPGs) deposition, forming the astrocytic scar and restricting GBM growth. Attenuating scar formation by the glutamate-MAO-B inhibition increased drug penetration into GBM assembloid, while reducing GBM confinement. CONCLUSIONS: Taken together, our study suggests that astrocytic scar could be a critical modulator in GBM therapeutics.

18.
Biomater Res ; 26(1): 82, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527159

RESUMEN

The human blood-brain barrier (BBB) is a unique multicellular structure that is in critical demand for fundamental neuroscience studies and therapeutic evaluation. Despite substantial achievements in creating in vitro human BBB platforms, challenges in generating specifics of physiopathological relevance are viewed as impediments to the establishment of in vitro models. In this review, we provide insight into the development and deployment of in vitro BBB models that allow investigation of the physiology and pathology of neurological therapeutic avenues. First, we highlight the critical components, including cell sources, biomaterial glue collections, and engineering techniques to reconstruct a miniaturized human BBB. Second, we describe recent breakthroughs in human mini-BBBs for investigating biological mechanisms in neurology. Finally, we discuss the application of human mini-BBBs to medical approaches. This review provides strategies for understanding neurological diseases, a validation model for drug discovery, and a potential approach for generating personalized medicine.

19.
Front Immunol ; 13: 907804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052093

RESUMEN

Recent epidemiological studies show a noticeable correlation between chronic microbial infections and neurological disorders. However, the underlying mechanisms are still not clear due to the biological complexity of multicellular and multiorgan interactions upon microbial infections. In this review, we show the infection leading to neurodegeneration mediated by multiorgan interconnections and neuroinflammation. Firstly, we highlight three inter-organ communications as possible routes from infection sites to the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we described the biological crosstalk between microglia and astrocytes upon pathogenic infection. Finally, our study indicates how neuroinflammation is a critical player in pathogen-mediated neurodegeneration. Taken together, we envision that antibiotics targeting neuro-pathogens could be a potential therapeutic strategy for neurodegeneration.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Astrocitos , Encéfalo , Humanos , Microglía/patología
20.
J Control Release ; 351: 1017-1037, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220487

RESUMEN

Immunotherapy has emerged as a powerful strategy for liquid tumors to overcome the limitations of conventional cancer therapies. The nanomedical delivery system offers the possibility of enhancing cancer immunotherapy and expanding it to solid tumors. Here, we discuss the applications of medical nanoparticles to improve the efficacy of immunotherapy. We first focus on nanomedical particles used in cancer immunotherapy to deliver peptide and mRNA vaccines to the lymph nodes; and the exosome-based therapeutic cancer vaccine. Next, we highlight the applications of nanomedicine in immune checkpoint therapy to prolong the therapeutic effects, enhance tumor-targeting ability, and overcome drug resistance. We also evaluate the roles of nanomedical particles in oncolytic viral treatment, enabling the systemic injection of viruses or oncolytic plasmids/oncotoxic proteins; and virus entry in a receptor-independency manner. Lastly, we focus on nanoparticles in chimeric antigen receptor (CAR) T cell therapy to engineer CAR T cells, enhancing T cell proliferation and infiltration. We envision the nanomedical particles enhancing the therapeutic effects of immunotherapy and revolutionizing cancer therapy in the foreseeable future.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Virus Oncolíticos , Humanos , Nanomedicina , Inmunoterapia , Virus Oncolíticos/genética , Neoplasias/patología , Vacunas contra el Cáncer/uso terapéutico , Inmunoterapia Adoptiva , Factores Inmunológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA