Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(6): 1468-1480.e9, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29731167

RESUMEN

The cell wall, a defining feature of plants, provides a rigid structure critical for bonding cells together. To overcome this physical constraint, plants must process cell wall linkages during growth and development. However, little is known about the mechanism guiding cell-cell detachment and cell wall remodeling. Here, we identify two neighboring cell types in Arabidopsis that coordinate their activities to control cell wall processing, thereby ensuring precise abscission to discard organs. One cell type produces a honeycomb structure of lignin, which acts as a mechanical "brace" to localize cell wall breakdown and spatially limit abscising cells. The second cell type undergoes transdifferentiation into epidermal cells, forming protective cuticle, demonstrating de novo specification of epidermal cells, previously thought to be restricted to embryogenesis. Loss of the lignin brace leads to inadequate cuticle formation, resulting in surface barrier defects and susceptible to infection. Together, we show how plants precisely accomplish abscission.


Asunto(s)
Arabidopsis/fisiología , Pared Celular/metabolismo , Lignina/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , NADPH Oxidasas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Pseudomonas syringae , Propiedades de Superficie
2.
Plant Cell ; 27(2): 417-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25670768

RESUMEN

Myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP(6)), also known as phytic acid, accumulates in large quantities in plant seeds, serving as a phosphorus reservoir, but is an animal antinutrient and an important source of water pollution. Here, we report that Gle1 (GLFG lethal 1) in conjunction with InsP(6) functions as an activator of the ATPase/RNA helicase LOS4 (low expression of osmotically responsive genes 4), which is involved in mRNA export in plants, supporting the Gle1-InsP(6)-Dbp5 (LOS4 homolog) paradigm proposed in yeast. Interestingly, plant Gle1 proteins have modifications in several key residues of the InsP(6) binding pocket, which reduce the basicity of the surface charge. Arabidopsis thaliana Gle1 variants containing mutations that increase the basic charge of the InsP(6) binding surface show increased sensitivity to InsP(6) concentrations for the stimulation of LOS4 ATPase activity in vitro. Expression of the Gle1 variants with enhanced InsP(6) sensitivity rescues the mRNA export defect of the ipk1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) InsP(6)-deficient mutant and, furthermore, significantly improves vegetative growth, seed yield, and seed performance of the mutant. These results suggest that Gle1 is an important factor responsible for mediating InsP(6) functions in plant growth and reproduction and that Gle1 variants with increased InsP(6) sensitivity may be useful for engineering high-yielding low-phytate crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Mutación/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ácido Fítico/metabolismo , Transporte de ARN , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Citosol/metabolismo , ARN Helicasas DEAD-box/metabolismo , Fertilidad , Silenciador del Gen , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Fenotipo , Plantas Modificadas Genéticamente , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/crecimiento & desarrollo , Fracciones Subcelulares/metabolismo , Nicotiana
3.
J Exp Bot ; 67(17): 5217-32, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27440937

RESUMEN

The nucleolar protein pescadillo (PES) controls biogenesis of the 60S ribosomal subunit through functional interactions with Block of Proliferation 1 (BOP1) and WD Repeat Domain 12 (WDR12) in plants. In this study, we determined protein characteristics and in planta functions of BOP1 and WDR12, and characterized defects in plant cell growth and proliferation caused by a deficiency of PeBoW (PES-BOP1-WDR12) proteins. Dexamethasone-inducible RNAi of BOP1 and WDR12 caused developmental arrest and premature senescence in Arabidopsis, similar to the phenotype of PES RNAi. Both the N-terminal domain and WD40 repeats of BOP1 and WDR12 were critical for specific associations with 60S/80S ribosomes. In response to nucleolar stress or DNA damage, PeBoW proteins moved from the nucleolus to the nucleoplasm. Kinematic analyses of leaf growth revealed that depletion of PeBoW proteins led to dramatically suppressed cell proliferation, cell expansion, and epidermal pavement cell differentiation. A deficiency in PeBoW proteins resulted in reduced cyclin-dependent kinase Type A activity, causing reduced phosphorylation of histone H1 and retinoblastoma-related (RBR) protein. PeBoW silencing caused rapid transcriptional modulation of cell-cycle genes, including reduction of E2Fa and Cyclin D family genes, and induction of several KRP genes, accompanied by down-regulation of auxin-related genes and up-regulation of jasmonic acid-related genes. Taken together, these results suggest that the PeBoW proteins involved in ribosome biogenesis play a critical role in plant cell growth and survival, and their depletion leads to inhibition of cell-cycle progression, possibly modulated by phytohormone signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/fisiología , Proliferación Celular/fisiología , Ribosomas/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Proteínas Portadoras/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclopentanos/metabolismo , Immunoblotting , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo
4.
J Exp Bot ; 66(20): 6297-310, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26163696

RESUMEN

Nucleostemin is a nucleolar GTP-binding protein that is involved in stem cell proliferation, embryonic development, and ribosome biogenesis in mammals. Plant nucleostemin-like 1 (NSN1) plays a role in embryogenesis, and apical and floral meristem development. In this study, a nucleolar function of NSN1 in the regulation of ribosome biogenesis was identified. Green fluorescent protein (GFP)-fused NSN1 localized to the nucleolus, which was primarily determined by its N-terminal domain. Recombinant NSN1 and its N-terminal domain (NSN1-N) bound to RNA in vitro. Recombinant NSN1 expressed GTPase activity in vitro. NSN1 silencing in Arabidopsis thaliana and Nicotiana benthamiana led to growth retardation and premature senescence. NSN1 interacted with Pescadillo and EBNA1 binding protein 2 (EBP2), which are nucleolar proteins involved in ribosome biogenesis, and with several ribosomal proteins. NSN1, NSN1-N, and EBP2 co-fractionated primarily with the 60S ribosomal large subunit in vivo. Depletion of NSN1 delayed 25S rRNA maturation and biogenesis of the 60S ribosome subunit, and repressed global translation. NSN1-deficient plants exhibited premature leaf senescence, excessive accumulation of reactive oxygen species, and senescence-related gene expression. Taken together, these results suggest that NSN1 plays a crucial role in plant growth and senescence by modulating ribosome biogenesis.


Asunto(s)
Arabidopsis/fisiología , Proteínas de Unión al GTP/genética , Nicotiana/fisiología , Biogénesis de Organelos , Ribosomas/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética
5.
Plant J ; 76(3): 393-405, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23909681

RESUMEN

Pescadillo (PES) is involved in diverse cellular processes such as embryonic development, ribosomal biogenesis, cell proliferation, and gene transcription in yeast and metazoans. In this study, we characterized cellular functions of plant PES in Nicotiana benthamiana, Arabidopsis, and tobacco BY-2 cells. A GFP fusion protein of PES is predominantly localized in the nucleolus, where its localization requires the N-terminal domain of PES. Silencing of plant PES led to growth arrest and acute cell death. PES interacts with plant homologs of BOP1 and WDR12 in the nucleolus, which are also nucleolar proteins involved in ribosome biogenesis of yeast and mammals. PES, BOP1, and WDR12 cofractionated with ribosome subunits. Depletion of any of these proteins led to defective biogenesis of the 60S ribosome large subunits and disruption of nucleolar morphology. PES-deficient plant cells also exhibited delayed maturation of 25S ribosomal RNA and suppressed global translation. During mitosis in tobacco BY-2 cells, PES is associated with the mitotic microtubules, including spindles and phragmoplasts, and PES deficiency disrupted spindle organization and chromosome arrangement. Collectively, these results suggest that plant PES has an essential role in cell growth and survival through its regulation of ribosome biogenesis and mitotic progression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas de Ciclo Celular/fisiología , Células Vegetales/fisiología , Ribosomas/metabolismo , Anafase , Arabidopsis , Muerte Celular , Línea Celular , Nucléolo Celular/fisiología , Dexametasona , Fenotipo , Interferencia de ARN , ARN Ribosómico/biosíntesis , Nicotiana
6.
Planta ; 237(4): 1015-23, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23192389

RESUMEN

The forkhead-associated (FHA) domain is involved in protein-protein interaction by recognizing a phosphothreonine epitope on target proteins. In this study, we investigated in planta functions of the Arabidopsis FHA domain 2. AtFHA2 was mainly localized in the nucleus. Arabidopsis fha2 null mutants grew normally during the vegetative stage, but had severely reduced fertility during reproductive stage. The reduced fertility was mainly caused by defective stamen filament elongation, while female flower parts of the mutants were fertile. Additionally, the mutants had fewer stamens than the wild type and the vegetative organs of the mutants, such as cotyledons and leaves, had increased ploidy. These results suggest that AtFHA2 may play a role in a signaling pathway for the control of plant organ development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/crecimiento & desarrollo , Proteínas Nucleares/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/genética , Cotiledón/química , ADN Bacteriano , ADN de Plantas/análisis , Mutagénesis Insercional , Proteínas Nucleares/genética , Infertilidad Vegetal , Hojas de la Planta/química , Ploidias , Polen/crecimiento & desarrollo
7.
Planta ; 233(6): 1073-85, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21290146

RESUMEN

In the present study, we investigated protein characteristics and physiological functions of PRBP (plastid RNA-binding protein) in Nicotiana benthamiana. PRBP fused to green fluorescent protein (GFP) localized to the chloroplasts. Recombinant PRBP proteins bind to single-stranded RNA in vitro, but not to DNA in a double- or a single-stranded form. Virus-induced gene silencing (VIGS) of PRBP resulted in leaf yellowing in N. benthamiana. At the cellular level, PRBP depletion disrupted chloroplast biogenesis: chloroplast number and size were reduced, and the thylakoid membrane was poorly developed. In PRBP-silenced leaves, protein levels of plastid-encoded genes were significantly reduced, whereas their mRNA levels were normal regardless of their promoter types indicating that PRBP deficiency primarily affects translational or post-translational processes. Depletion of PRBP impaired processing of the plastid-encoded 4.5S ribosomal RNA, resulting in accumulation of the larger precursor rRNAs in the chloroplasts. In addition, PRBP-deficient chloroplasts contained significantly reduced levels of mature 4.5S and 5S rRNAs in the polysomal fractions, indicating decreased chloroplast translation. These results suggest that PRBP plays a role in chloroplast rRNA processing and chloroplast development in higher plants.


Asunto(s)
Cloroplastos/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , ARN Ribosómico/metabolismo , Cloroplastos/genética , Cloroplastos/ultraestructura , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas Fluorescentes Verdes/análisis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/genética , Plastidios/genética , ARN Mensajero/genética , ARN Ribosómico/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Tilacoides/fisiología , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/ultraestructura
8.
Mol Cells ; 26(3): 270-7, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18511878

RESUMEN

This study addresses the physiological functions of the Ran-binding protein homolog NbRanBP1 in Nicotiana benthamiana. Virus-induced gene silencing (VIGS) of NbRanBP1 caused stunted growth, leaf yellowing, and abnormal leaf morphology. The NbRanBP1 gene was constitutively expressed in diverse tissues and an NbRanBP1:GFP fusion protein was primarily localized to the nuclear rim and the cytosol. BiFC analysis revealed in vivo interaction between NbRanBP1 and NbRan1 in the nuclear envelope and the cytosol. Depletion of NbRanBP1 or NbRan1 reduced nuclear accumulation of a NbBTF3:GFP marker protein. In the later stages of development, NbRanBP1 VIGS plants showed stress responses such as reduced mitochondrial membrane potential, excessive production of reactive oxygen species, and induction of defense-related genes. The molecular role of RanBP1 in plants is discussed in comparison with RanBP1 function in yeast and mammals.


Asunto(s)
Nicotiana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Potencial de la Membrana Mitocondrial/fisiología , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Nicotiana/genética
9.
Cell Rep ; 21(12): 3373-3380, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262318

RESUMEN

Reactive oxygen species (ROS) are inevitable by-products of aerobic metabolic processes, causing non-specific oxidative damage and also acting as second messengers. Superoxide is a short-lived ROS that functions in various cellular responses, including aging and cell death. However, it is unclear as to how superoxide brings about age-dependent cell death and senescence. Here, we show that the accumulation and signaling of superoxide are mediated by three Arabidopsis proteins-RPK1, CaM4, and RbohF-which trigger subsequent cellular events leading to age-dependent cell death. We demonstrate that the NADPH oxidase RbohF is responsible for RPK1-mediated transient accumulation of superoxide, SIRK kinase induction, and cell death, all of which are positively regulated by CaM4. RPK1 physically interacts with and phosphorylates CaM4, which, in turn, interacts with RbohF. Overall, we demonstrate how the protein trio governs the superoxide accumulation and signaling at the cell surface to control senescence and cell death.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo , Muerte Celular , Senescencia Celular , NADPH Oxidasas/metabolismo , Proteínas Quinasas/genética , Superóxidos/metabolismo , Arabidopsis , Calmodulina/genética , NADPH Oxidasas/genética , Unión Proteica , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA