Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Med Inform Decis Mak ; 21(1): 114, 2021 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-33812383

RESUMEN

BACKGROUND: Artificial intelligence (AI) research is highly dependent on the nature of the data available. With the steady increase of AI applications in the medical field, the demand for quality medical data is increasing significantly. We here describe the development of a platform for providing and sharing digital pathology data to AI researchers, and highlight challenges to overcome in operating a sustainable platform in conjunction with pathologists. METHODS: Over 3000 pathological slides from five organs (liver, colon, prostate, pancreas and biliary tract, and kidney) in histologically confirmed tumor cases by pathology departments at three hospitals were selected for the dataset. After digitalizing the slides, tumor areas were annotated and overlaid onto the images by pathologists as the ground truth for AI training. To reduce the pathologists' workload, AI-assisted annotation was established in collaboration with university AI teams. RESULTS: A web-based data sharing platform was developed to share massive pathological image data in 2019. This platform includes 3100 images, and 5 pre-processing algorithms for AI researchers to easily load images into their learning models. DISCUSSION: Due to different regulations among countries for privacy protection, when releasing internationally shared learning platforms, it is considered to be most prudent to obtain consent from patients during data acquisition. CONCLUSIONS: Despite limitations encountered during platform development and model training, the present medical image sharing platform can steadily fulfill the high demand of AI developers for quality data. This study is expected to help other researchers intending to generate similar platforms that are more effective and accessible in the future.


Asunto(s)
Inteligencia Artificial , Neoplasias , Algoritmos , Humanos , Masculino
2.
Med Image Anal ; 89: 102886, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37494811

RESUMEN

Microsatellite instability (MSI) refers to alterations in the length of simple repetitive genomic sequences. MSI status serves as a prognostic and predictive factor in colorectal cancer. The MSI-high status is a good prognostic factor in stage II/III cancer, and predicts a lack of benefit to adjuvant fluorouracil chemotherapy in stage II cancer but a good response to immunotherapy in stage IV cancer. Therefore, determining MSI status in patients with colorectal cancer is important for identifying the appropriate treatment protocol. In the Pathology Artificial Intelligence Platform (PAIP) 2020 challenge, artificial intelligence researchers were invited to predict MSI status based on colorectal cancer slide images. Participants were required to perform two tasks. The primary task was to classify a given slide image as belonging to either the MSI-high or the microsatellite-stable group. The second task was tumor area segmentation to avoid ties with the main task. A total of 210 of the 495 participants enrolled in the challenge downloaded the images, and 23 teams submitted their final results. Seven teams from the top 10 participants agreed to disclose their algorithms, most of which were convolutional neural network-based deep learning models, such as EfficientNet and UNet. The top-ranked system achieved the highest F1 score (0.9231). This paper summarizes the various methods used in the PAIP 2020 challenge. This paper supports the effectiveness of digital pathology for identifying the relationship between colorectal cancer and the MSI characteristics.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Humanos , Inteligencia Artificial , Pronóstico , Fluorouracilo/uso terapéutico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA