Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256095

RESUMEN

Astrocytes are the most abundant glial cell type in the central nervous system, and they play a crucial role in normal brain function. While gliogenesis and glial differentiation occur during perinatal cerebellar development, the processes that occur during early postnatal development remain obscure. In this study, we conducted transcriptomic profiling of postnatal cerebellar astrocytes at postnatal days 1, 7, 14, and 28 (P1, P7, P14, and P28), identifying temporal-specific gene signatures at each specific time point. Comparing these profiles with region-specific astrocyte differentially expressed genes (DEGs) published for the cortex, hippocampus, and olfactory bulb revealed cerebellar-specific gene signature across these developmental timepoints. Moreover, we conducted a comparative analysis of cerebellar astrocyte gene signatures with gene lists from pediatric brain tumors of cerebellar origin, including ependymoma and medulloblastoma. Notably, genes downregulated at P14, such as Kif11 and HMGB2, exhibited significant enrichment across all pediatric brain tumor groups, suggesting the importance of astrocytic gene repression during cerebellar development to these tumor subtypes. Collectively, our studies describe gene expression patterns during cerebellar astrocyte development, with potential implications for pediatric tumors originating in the cerebellum.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Niño , Femenino , Embarazo , Humanos , Astrocitos , Perfilación de la Expresión Génica , Encéfalo , Transcriptoma , Cerebelo
2.
Proc Natl Acad Sci U S A ; 115(7): 1629-1634, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29386384

RESUMEN

Mutations in DJ-1 (PARK7) are a known cause of early-onset autosomal recessive Parkinson's disease (PD). Accumulating evidence indicates that abnormalities of synaptic vesicle trafficking underlie the pathophysiological mechanism of PD. In the present study, we explored whether DJ-1 is involved in CNS synaptic function. DJ-1 deficiency impaired synaptic vesicle endocytosis and reavailability without inducing structural alterations in synapses. Familial mutants of DJ-1 (M26I, E64D, and L166P) were unable to rescue defective endocytosis of synaptic vesicles, whereas WT DJ-1 expression completely restored endocytic function in DJ-1 KO neurons. The defective synaptic endocytosis shown in DJ-1 KO neurons may be attributable to alterations in membrane cholesterol level. Thus, DJ-1 appears essential for synaptic vesicle endocytosis and reavailability, and impairment of this function by familial mutants of DJ-1 may be related to the pathogenesis of PD.


Asunto(s)
Endocitosis/fisiología , Terminaciones Nerviosas/patología , Proteína Desglicasa DJ-1/fisiología , Sinapsis/patología , Vesículas Sinápticas/patología , Animales , Células Cultivadas , Ratones , Ratones Noqueados , Mutación , Terminaciones Nerviosas/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo
3.
Korean J Physiol Pharmacol ; 25(6): 565-574, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34697267

RESUMEN

Astrocytes are activated in response to brain damage. Here, we found that expression of Kir4.1, a major potassium channel in astrocytes, is increased in activated astrocytes in the injured brain together with upregulation of the neural stem cell markers, Sox2 and Nestin. Expression of Kir4.1 was also increased together with that of Nestin and Sox2 in neurospheres formed from dissociated P7 mouse brains. Using the Kir4.1 blocker BaCl2 to determine whether Kir4.1 is involved in acquisition of stemness, we found that inhibition of Kir4.1 activity caused a concentration-dependent increase in sphere size and Sox2 levels, but had little effect on Nestin levels. Moreover, induction of differentiation of cultured neural stem cells by withdrawing epidermal growth factor and fibroblast growth factor from the culture medium caused a sharp initial increase in Kir4.1 expression followed by a decrease, whereas Sox2 and Nestin levels continuously decreased. Inhibition of Kir4.1 had no effect on expression levels of Sox2 or Nestin, or the astrocyte and neuron markers glial fibrillary acidic protein and ß-tubulin III, respectively. Taken together, these results indicate that Kir4.1 may control gain of stemness but not differentiation of stem cells.

4.
Glia ; 68(10): 2086-2101, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32176388

RESUMEN

Monocyte-derived macrophages play a role in the repair of the injured brain. We previously reported that a deficiency of the Parkinson's disease (PD)-associated gene DJ-1 delays repair of brain injury produced by stereotaxic injection of ATP, a component of damage-associated molecular patterns. Here, we show that a DJ-1 deficiency attenuates monocyte infiltration into the damaged brain owing to a decrease in C-C motif chemokine ligand 2 (CCL2) expression in astrocytes. Like DJ-1-knockout (KO) mice, CCL2 receptor (CCR2)-KO mice showed defects in monocyte infiltration and delayed recovery of brain injury, as determined by 9.4 T magnetic resonance imaging analysis and immunostaining for tyrosine hydroxylase and glial fibrillary acid protein. Notably, transcriptome analyses showed that genes related to regeneration and synapse formation were similarly downregulated in injured brains of DJ-1-KO and CCR2-KO mice compared with the injured wild-type brain. These results indicate that defective astrogliosis in DJ-1-KO mice is associated with decreased CCL2 expression and attenuated monocyte infiltration, resulting in delayed repair of brain injury. Thus, delayed repair of brain injury could contribute to the development of PD. MAIN POINTS: A DJ-1 deficiency attenuates infiltration of monocytes owing to a decrease in CCL2 expression in astrocytes, which in turn led to delay in repair of brain injury.


Asunto(s)
Astrocitos/metabolismo , Lesiones Encefálicas/metabolismo , Quimiocina CCL2/biosíntesis , Monocitos/metabolismo , Proteína Desglicasa DJ-1/deficiencia , Animales , Astrocitos/patología , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/patología , Proteína Desglicasa DJ-1/genética
5.
Neurobiol Dis ; 134: 104672, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31707117

RESUMEN

Ischemic white matter injuries underlie cognitive decline in the elderly and vascular dementia. Ischemia in the subcortical white matter is caused by chronic reduction of blood flow due to narrowing of small arterioles. However, it remains unclear how chronic ischemia leads to white matter pathology. We aimed to develop an in vitro model of ischemic white matter injury using organotypic slice cultures. Cultured cerebellar slices preserved fully myelinated white matter tracts that were amenable to chronic hypoxic insult. Prolonged hypoxia caused progressive morphological evidence of axonal degeneration with focal constrictions and swellings. In contrast, myelin sheaths and oligodendrocytes exhibited remarkable resilience to hypoxia. The cytoskeletal degradation of axons was accompanied by mitochondrial shortening and lysosomal activation. Multiple pharmacological manipulations revealed that the AMPA glutamate receptor, calpain proteolysis, and lysosomal proteases were independently implicated in hypoxia-induced axonal degeneration in our model. Thus, our in vitro model would be a novel experimental system to explore molecular mechanisms of ischemic white matter injury. Furthermore, we verified that the in vitro assay could be successfully utilized to screen for molecules that can ameliorate hypoxia/ischemia-induced axonal degeneration.


Asunto(s)
Axones/patología , Axones/fisiología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología , Animales , Hipoxia de la Célula , Cerebelo/patología , Cerebelo/fisiopatología , Lisosomas/fisiología , Ratones Endogámicos C57BL , Vaina de Mielina/patología , Técnicas de Cultivo de Órganos , Proteolisis , Receptores AMPA/fisiología
6.
Neurobiol Dis ; 127: 482-491, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30954702

RESUMEN

Dysfunctional regulation of inflammation may contribute to the progression of neurodegenerative diseases. The results of this study revealed that DJ-1, a Parkinson's disease (PD) gene, regulated expression of prostaglandin D2 synthase (PTGDS) and production of prostaglandin D2 (PGD2), by which DJ-1 enhanced anti-inflammatory function of astrocytes. In injured DJ-1 knockout (KO) brain, expression of tumor necrosis factor-alpha (TNF-α) was more increased, but that of anti-inflammatory heme oxygenase-1 (HO-1) was less increased compared with that in injured wild-type (WT) brain. Similarly, astrocyte-conditioned media (ACM) prepared from DJ-1-KO astrocytes less induced HO-1 expression and less inhibited expression of inflammatory mediators in microglia. With respect to the underlying mechanism, we found that PTGDS that induced expression of HO-1 was lower in DJ-1 KO astrocytes and brains compared with their WT counterparts. In addition, PTGDS levels increased in the injured brain of WT mice, but barely in that of KO mice. We also found that DJ-1 regulated PTGDS expression through Sox9. Thus, Sox9 siRNAs reduced PTGDS expression in WT astrocytes, and Sox9 overexpression rescued PTGDS expression in DJ-1 KO astrocytes. In agreement with these results, ACM from Sox9 siRNA-treated astrocytes and that from Sox9-overexpression astrocytes exerted opposite effects on HO-1 expression and anti-inflammation. These findings suggest that DJ-1 positively regulates anti-inflammatory functions of astrocytes, and that DJ-1 dysfunction contributes to the excessive inflammatory response in PD development.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Inflamación/genética , Oxidorreductasas Intramoleculares/genética , Lipocalinas/genética , Proteína Desglicasa DJ-1/genética , Animales , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
7.
Glia ; 66(2): 445-458, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29105838

RESUMEN

Defects in repair of damaged brain accumulate injury and contribute to slow-developing neurodegeneration. Here, we report that a deficiency of DJ-1, a Parkinson's disease (PD) gene, delays repair of brain injury due to destabilization of Sox9, a positive regulator of astrogliosis. Stereotaxic injection of ATP into the brain striatum produces similar size of acute injury in wild-type and DJ-1-knockout (KO) mice. However, recovery of the injury is delayed in KO mice, which is confirmed by 9.4T magnetic resonance imaging and tyrosine hydroxylase immunostaining. DJ-1 regulates neurite outgrowth from damaged neurons in a non-cell autonomous manner. In DJ-1 KO brains and astrocytes, Sox9 protein levels are decreased due to enhanced ubiquitination, resulting in defects in astrogliosis and glial cell-derived neurotrophic factor/ brain-derived neurotrophic factor expression in injured brain and astrocytes. These results indicate that DJ-1 deficiency causes defects in astrocyte-mediated repair of brain damage, which may contribute to the development of PD.


Asunto(s)
Astrocitos/metabolismo , Lesiones Encefálicas/metabolismo , Gliosis/metabolismo , Proteína Desglicasa DJ-1/deficiencia , Factor de Transcripción SOX9/metabolismo , Animales , Astrocitos/patología , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Gliosis/genética , Gliosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/genética , Estabilidad Proteica , Factor de Transcripción SOX9/genética
8.
Crit Care Med ; 42(1): 17-25, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24105454

RESUMEN

OBJECTIVES: We investigated the clinical impact of multivessel percutaneous coronary intervention in ST-segment elevation myocardial infarction complicated by cardiogenic shock with multivessel disease. DESIGN: A prospective, multicenter, observational study. SETTING: Cardiac ICU of a university hospital. PATIENTS: Between November 2005 and September 2010, 338 patients were selected. Inclusion criteria were as follows: 1) ST-segment elevation myocardial infarction with cardiogenic shock and 2) multivessel disease with successful primary percutaneous coronary intervention for the infarct-related artery. Patients were divided into multivessel percutaneous coronary intervention and culprit-only percutaneous coronary intervention. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Primary outcome was all-cause mortality. Median follow-up duration was 224 days (interquartile range, 46-383 d). Multivessel percutaneous coronary intervention was performed during the primary percutaneous coronary intervention in 60 patients (17.8%). In-hospital mortality was similar in both groups (multivessel percutaneous coronary intervention vs culprit-only percutaneous coronary intervention, 31.7% vs 24.5%; p = 0.247). All-cause mortality during follow-up was not significantly different between the two groups after adjusting for patient, angiographic, and procedural characteristics as well as propensity scores for receiving multivessel percutaneous coronary intervention (35.0% vs 30.6%; adjusted hazard ratio, 1.06; 95% CI, 0.61-1.86; p = 0.831). There were no significant differences between the groups in rates of major adverse cardiac events (41.7% vs 37.1%; adjusted hazard ratio, 1.03; 95% CI, 0.62-1.71; p = 0.908) and any revascularization (6.7% vs 4.7%; adjusted hazard ratio, 1.88; 95% CI, 0.51-6.89; p = 0.344). CONCLUSIONS: Multivessel percutaneous coronary intervention could not reduce the prevalence of mortality in patients with cardiogenic shock complicating ST-segment elevation myocardial infarction and multivessel disease during primary percutaneous coronary intervention.


Asunto(s)
Infarto del Miocardio/complicaciones , Intervención Coronaria Percutánea/métodos , Choque Cardiogénico/cirugía , Anciano , Vasos Coronarios/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/mortalidad , Infarto del Miocardio/cirugía , Puntaje de Propensión , Estudios Prospectivos , Choque Cardiogénico/etiología , Choque Cardiogénico/mortalidad , Resultado del Tratamiento
9.
Nanotechnology ; 25(37): 375604, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25148002

RESUMEN

Nanocomposites consisting of Cu or Cu2O nanoparticles in various polyimide (PI) films were successfully prepared using polyamic acid (PAA) and Cu powders. Cu powders were dissolved into PAA solutions, and the solutions were spin-coated onto the substrates. Cu or Cu2O nanoparticles were formed in PI film by curing in a reducing or inert atmosphere, respectively. The Cu nanoparticles were transformed to Cu2O nanoparticles by post-heat treatment in an oxidizing atmosphere after curing in a reducing atmosphere. Transmission electron microscopy showed that uniform, round Cu2O nanoparticles 6.0 nm in diameter were dispersed in the PI film by post-heat treatment. The addition of Cu2O nanoparticles in the 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-4,4'-oxydianiline (6FDA-ODA) PI film enhanced the refractive index of the 6FDA-ODA PI film from 1.60 to 1.72 at 633 nm, and the transparency of the nanocomposite film was about 70-90% in the visible region and remained around 90% beyond 550 nm.

10.
ESC Heart Fail ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981003

RESUMEN

AIMS: Assessing the risk for HF rehospitalization is important for managing and treating patients with HF. To address this need, various risk prediction models have been developed. However, none of them used deep learning methods with real-world data. This study aimed to develop a deep learning-based prediction model for HF rehospitalization within 30, 90, and 365 days after acute HF (AHF) discharge. METHODS AND RESULTS: We analysed the data of patients admitted due to AHF between January 2014 and January 2019 in a tertiary hospital. In performing deep learning-based predictive algorithms for HF rehospitalization, we use hyperbolic tangent activation layers followed by recurrent layers with gated recurrent units. To assess the readmission prediction, we used the AUC, precision, recall, specificity, and F1 measure. We applied the Shapley value to identify which features contributed to HF readmission. Twenty-two prognostic features exhibiting statistically significant associations with HF rehospitalization were identified, consisting of 6 time-independent and 16 time-dependent features. The AUC value shows moderate discrimination for predicting readmission within 30, 90, and 365 days of follow-up (FU) (AUC:0.63, 0.74, and 0.76, respectively). The features during the FU have a relatively higher contribution to HF rehospitalization than features from other time points. CONCLUSIONS: Our deep learning-based model using real-world data could provide valid predictions of HF rehospitalization in 1 year follow-up. It can be easily utilized to guide appropriate interventions or care strategies for patients with HF. The closed monitoring and blood test in daily clinics are important for assessing the risk of HF rehospitalization.

11.
J Am Chem Soc ; 135(26): 9915-23, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23745510

RESUMEN

Hydrogen sulfide (H2S) is a multifunctional signaling molecule that exerts neuroprotective effects in oxidative stress. In this article, we report a mitochondria-localized two-photon probe, SHS-M2, that can be excited by 750 nm femtosecond pulses and employed for ratiometric detection of H2S in live astrocytes and living brain slices using two-photon microscopy (TPM). SHS-M2 shows bright two-photon-excited fluorescence and a marked change in emission color from blue to yellow in response to H2S, low cytotoxicity, easy loading, and minimum interference from other biologically relevant species including reactive sulfur, oxygen, and nitrogen species, thereby allowing quantitative analysis of H2S levels. Molecular TPM imaging with SHS-M2 in astrocytes revealed that there is a correlation between the ratiometric analysis and expression levels of cystathionine ß-synthase (CBS), the major enzyme that catalyzes H2S production. In studies involving DJ-1, a Parkinson's disease (PD) gene, attenuated H2S production in comparison with wild-type controls was observed in DJ-1-knockout astrocytes and brain slices, where CBS expression was decreased. These findings demonstrate that reduced H2S levels in astrocytes may contribute to the development of PD and that SHS-M2 may be useful as a marker to detect a risk of neurodegenerative diseases, including PD.


Asunto(s)
Astrocitos/efectos de los fármacos , Colorantes Fluorescentes/farmacología , Sulfuro de Hidrógeno/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Oncogénicas/metabolismo , Enfermedad de Parkinson/metabolismo , Protones , Astrocitos/metabolismo , Colorantes Fluorescentes/química , Humanos , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Mitocondrias/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Proteínas Oncogénicas/deficiencia , Proteínas Oncogénicas/genética , Oxidación-Reducción , Enfermedad de Parkinson/genética , Proteína Desglicasa DJ-1
12.
Neurobiol Dis ; 60: 1-10, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23969237

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder caused by the death of dopaminergic neurons in the substantia nigra. Importantly, altered astrocyte and microglial functions could contribute to neuronal death in PD. In this study, we demonstrate a novel mechanism by which DJ-1 (PARK7), an early onset autosomal-recessive PD gene, negatively regulates inflammatory responses of astrocytes and microglia by facilitating the interaction between STAT1 and its phosphatase, SHP-1 (Src-homology 2-domain containing protein tyrosine phosphatase-1). Astrocytes and microglia cultured from DJ-1-knockout (KO) mice exhibited increased expression of inflammatory mediators and phosphorylation levels of STAT1 (p-STAT1) in response to interferon-gamma (IFN-γ) compared to cells from wild-type (WT) mice. DJ-1 deficiency also attenuated IFN-γ-induced interactions of SHP-1 with p-STAT1 and STAT1, measured 1 and 12h after IFN-γ treatment, respectively. Subsequent experiments showed that DJ-1 directly interacts with SHP-1, p-STAT1, and STAT1. Notably, DJ-1 bound to SHP-1 independently of IFN-γ, whereas the interactions of DJ-1 with p-STAT1 and STAT1 were dependent on IFN-γ. Similar results were obtained in brain slice cultures, where IFN-γ induced much stronger STAT1 phosphorylation and inflammatory responses in KO slices than in WT slices. Moreover, IFN-γ treatment induced neuronal damage in KO slices. Collectively, these findings suggest that DJ-1 may function as a scaffold protein that facilitates SHP-1 interactions with p-STAT1 and STAT1, thereby preventing extensive and prolonged STAT1 activation. Thus, the loss of DJ-1 function may increase the risk of PD by enhancing brain inflammation.


Asunto(s)
Astrocitos/metabolismo , Microglía/metabolismo , Proteínas Oncogénicas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Factor de Transcripción STAT1/metabolismo , Animales , Antiinflamatorios/metabolismo , Encéfalo/metabolismo , Interferón gamma/metabolismo , Ratones , Ratones Noqueados , Peroxirredoxinas , Fosforilación , Proteína Desglicasa DJ-1
13.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36909526

RESUMEN

Neuronal activity drives global alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. Here we show that neuronal activity induces widespread transcriptional upregulation and downregulation in astrocytes, highlighted by the identification of a neuromodulator transporter Slc22a3 as an activity-inducible astrocyte gene regulating sensory processing in the olfactory bulb. Loss of astrocytic Slc22a3 reduces serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduces expression of GABA biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes, while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.

14.
Science ; 380(6650): eade0027, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319217

RESUMEN

Neuronal activity drives alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. We found that neuronal activity induces widespread transcriptional up-regulation and down-regulation in astrocytes, highlighted by the identification of Slc22a3 as an activity-inducible astrocyte gene that encodes neuromodulator transporter Slc22a3 and regulates sensory processing in the mouse olfactory bulb. Loss of astrocytic Slc22a3 reduced serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduced the expression of γ-aminobutyric acid (GABA) biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.


Asunto(s)
Astrocitos , Histonas , Bulbo Olfatorio , Percepción Olfatoria , Proteínas de Transporte de Catión Orgánico , Serotonina , Transmisión Sináptica , Animales , Ratones , Astrocitos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Histonas/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Serotonina/metabolismo , Bulbo Olfatorio/metabolismo , Epigénesis Genética , Percepción Olfatoria/genética , Percepción Olfatoria/fisiología
15.
Healthcare (Basel) ; 11(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37761743

RESUMEN

Prior studies exploring the effectiveness of traditional Korean medicine (TKM) treatment for facial palsy have mainly focused on Bell's palsy, and there are few studies on the effectiveness of TKM treatments for traumatic facial palsy following mandibular fracture. The patient was a 24-year-old Korean man with left-sided facial paralysis following a left mandibular fracture. Surgery was performed for the fracture and the facial palsy was treated using conventional medicine (CM) treatments for approximately 3 months, but there was no improvement observed in the patient's condition. Subsequently, the patient underwent an integrative Korean medicine treatment regimen consisting of acupuncture, pharmacopuncture, cupping, moxibustion, and herbal medication for a duration of 2 months. After 2 months of treatments, the House-Brackmann facial grading scale changed from Ⅴ to II and Yanagihara's unweighted grading score increased from 9 to 34. This case presentation and previous studies of traumatic facial palsy using TKM treatment show that TKM treatment may be considered a complementary or alternative treatment method to CM treatment in patients with traumatic facial palsy. PROSPERO registration number: CRD42023445051.

16.
Sci Adv ; 9(17): eade2675, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115922

RESUMEN

Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genómica , Predisposición Genética a la Enfermedad , Secuenciación Completa del Genoma , Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/genética , Proteínas Supresoras de Tumor/genética
17.
J Nanosci Nanotechnol ; 12(4): 3637-40, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22849185

RESUMEN

We investigated the imidization of a polyimide (PI) and the formation of Cu nanoparticles in a PI film by curinga precursor of PI (polyamic acid (PAA) dissolved in n-methyl-2-pyrrolidinone) in a reducing atmosphere in the rapid thermal annealing (RTA) system. A Cu film was deposited onto the SiO2/Si substrate, and the PAA was spin-coated onto the Cu film. After the PAA reacted with the Cu film, soft-baking was performed to evaporate the solvent. Finally, the PAA was imidized to PI at 450 degrees C by curing in a reducing atmosphere with the RTA. Fourier transform infrared spectroscopy showed that the PAA was successfully imidized by the RTA. X-ray diffraction patterns revealed that Cu nanoparticles formed by RTA curing at 450 degrees C for 5 minutes in a reducing atmosphere, and transmission electron microscopy showed that Cu nanoparticles about 6.5 nm in size were uniformly dispersed in the PI film. Curing by RTA is an attractive method because it takes only a few minutes.

18.
Korean J Intern Med ; 37(2): 350-365, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35016269

RESUMEN

BACKGROUND/AIMS: While switching strategies of P2Y12 receptor inhibitors (RIs) have sometimes been used in acute myocardial infarction (AMI) patients, the current status of in-hospital P2Y12RI switching remains unknown. METHODS: Overall, 8,476 AMI patients who underwent successful revascularization from Korea Acute Myocardial Infarction Registry-National Institute of Health (KAMIR-NIH) were divided according to in-hospital P2Y12RI strategies, and net adverse cardiovascular events (NACEs), defined as a composite of cardiac death, non-fatal myocardial infarction (MI), stroke, or thrombolysis in myocardial infarction (TIMI) major bleeding during hospitalization were compared. RESULTS: Patients with in-hospital P2Y12RI switching accounted for 16.5%, of which 867 patients were switched from clopidogrel to potent P2Y12RI (C-P) and 532 patients from potent P2Y12RI to clopidogrel (P-C). There were no differences in NACEs among the unchanged clopidogrel, the unchanged potent P2Y12RIs, and the P2Y12RI switching groups. However, compared to the unchanged clopidogrel group, the C-P group had a higher incidence of non-fatal MI, and the P-C group had a higher incidence of TIMI major bleeding. In clinical events of in-hospital P2Y12RI switching, 90.9% of non-fatal MI occurred during pre-switching clopidogrel administration, 60.7% of TIMI major bleeding was related to pre-switching P2Y12RIs, and 71.4% of TIMI major bleeding was related to potent P2Y12RIs. Only 21.6% of the P2Y12RI switching group switched to P2Y12RIs after a loading dose (LD); however, there were no differences in clinical events between patients with and without LD. CONCLUSION: In-hospital P2Y12RI switching occurred occasionally, but had relatively similar clinical outcomes compared to unchanged P2Y12RIs in Korean AMI patients. Non-fatal MI and bleeding appeared to be mainly related to pre-switching P2Y12RIs.


Asunto(s)
Infarto del Miocardio , Intervención Coronaria Percutánea , Clopidogrel/efectos adversos , Hemorragia/inducido químicamente , Hospitales , Humanos , Infarto del Miocardio/tratamiento farmacológico , Intervención Coronaria Percutánea/efectos adversos , Inhibidores de Agregación Plaquetaria/efectos adversos , Clorhidrato de Prasugrel/efectos adversos , Antagonistas del Receptor Purinérgico P2Y/efectos adversos , Resultado del Tratamiento
19.
Am Heart J ; 161(2): 383-90, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21315223

RESUMEN

BACKGROUND: Various platelet function tests are currently used to measure responsiveness to antiplatelet therapy. We sought to compare 2 point-of-care platelet function tests, VerifyNow Assay (Accumetrics, San Diego, CA) and Multiple Electrode Platelet Aggregometry (MEA) (Dynabyte, Munich, Germany), for predicting early clinical outcomes after percutaneous coronary intervention. METHODS: Platelet reactivity in the arachidonic acid-induced and adenosine diphosphate (ADP)-induced platelet aggregation was measured simultaneously with the VerifyNow Assay and MEA in 222 patients undergoing percutaneous coronary intervention between August and October 2009. We investigated the correlations between the 2 tests and performed receiver operating characteristic curve analysis for major adverse cardiovascular events (MACE), a composite of death, myocardial infarction (MI), stroke, and target vessel revascularization, at 30 days. RESULTS: Major adverse cardiovascular events occurred in 19 patients (8.6%), including 14 patients with periprocedural MI and 5 patients with stroke. Correlations were weak between the 2 tests in the arachidonic acid-induced (Spearman r = 0.189, P = .006) and ADP-induced platelet reactivity (Spearman r = 0.390, P < .001). Although the VerifyNow P2Y12 Assay (Accumetrics) was able to predict periprocedural MI (area under the aggregation curve 0.680, P = .024) and 30-day MACE (area under the aggregation curve 0.649, P = .032), VerifyNow Aspirin Assay (Accumetrics), MEA ASPI test, and MEA ADP test failed to predict such clinical events. Hyporesponsiveness to clopidogrel based on the VerifyNow Assay was associated with about a 6-fold increased risk of MACE at 30 days. CONCLUSIONS: Hyporesponsiveness to clopidogrel measured by VerifyNow Assay was able to identify patients with dual antiplatelet therapy who were at higher risk for periprocedural MI and MACE at 30 days. Further randomized studies are required to validate the effectiveness of different platelet function tests for predicting long-term clinical outcomes.


Asunto(s)
Angioplastia Coronaria con Balón , Pruebas de Función Plaquetaria/métodos , Sistemas de Atención de Punto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Resultado del Tratamiento
20.
J Nanosci Nanotechnol ; 11(1): 796-800, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21446548

RESUMEN

We investigated the formation of CuO or Cu2O nanoparticles in the thick polyimide films by oxidizing Cu nanoparticles at various temperatures during the post heat-treatment. Cu nanoparticles of 4-5 nm in diameter were initially formed in the polyimide film by the reaction between a Cu film and a polyimide precursor, polyamic acid, and a following thermal curing in a reducing atmosphere. After the subsequent post heat-treatments in oxidizing atmospheres, X-ray diffraction patterns revealed that initial metallic Cu nanoparticles were transformed to Cu2O or CuO nanoparticles depending on the temperature during the post heat-treatment. Cu nanoparticles were oxidized to Cu2O during the post heat-treatment at low temperature while Cu nanoparticles were oxidized to CuO during the post heat-treatment at high temperature. Cross-sectional TEM studies showed that about 4.7 nm sized Cu2O nanoparticles or 4.7-5.2 nm sized CuO nanoparticles were fabricated in a thick polyimide film depending on the post heat-treatment condition. In the optical absorption measurements, the absorption peak from surface plasmon resonance of Cu nanoparticles disappeared during the post heat-treatment in an oxidizing atmosphere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA