Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(20): e2306434, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38152953

RESUMEN

MXenes, with their remarkable attributes, stand at the forefront of diverse applications. However, the challenge remains in sustaining their performance, especially concerning Ti3C2Tx MXene electrodes. Current self-healing techniques, although promising, often rely heavily on adjacent organic materials. This study illuminates a pioneering water-initiated self-healing mechanism tailored specifically for standalone MXene electrodes. Here, both water and select organic solvents seamlessly mend impaired regions. Comprehensive evaluations around solvent types, thermal conditions, and substrate nuances underline water's unmatched healing efficacy, attributed to its innate ability to forge enduring hydrogen bonds with MXenes. Optimal healing environments range from ambient conditions to a modest 50 °C. Notably, on substrates rich in hydroxyl groups, the healing efficiency remains consistently high. The proposed healing mechanism encompasses hydrogen bonding formation, capillary action-induced expansion of interlayer spacing, solvent lubrication, Gibbs free energy minimizing MXene nanosheet rearrangement, and solvent evaporation-triggered MXene layer recombination. MXenes' resilience is further showcased by their electrical revival from profound damages, culminating in the crafting of Joule-heated circuits and heaters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA