Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(5): 951-969.e9, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31995728

RESUMEN

AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisosomas/enzimología , Ubiquitina/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adolescente , Adulto , Animales , Autofagia/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Femenino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglucemiantes/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/microbiología , Lisosomas/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Metformina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal , Células THP-1 , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Adulto Joven
2.
Mol Cell ; 70(1): 120-135.e8, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625033

RESUMEN

The Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to orchestrate autophagic responses is not known. Here we show that mTOR is inhibited by lysosomal damage. Lysosomal damage, recognized by galectins, leads to association of galectin-8 (Gal8) with the mTOR apparatus on the lysosome. Gal8 inhibits mTOR activity through its Ragulator-Rag signaling machinery, whereas galectin-9 activates AMPK in response to lysosomal injury. Both systems converge upon downstream effectors including autophagy and defense against Mycobacterium tuberculosis. Thus, a novel galectin-based signal-transduction system, termed here GALTOR, intersects with the known regulators of mTOR on the lysosome and controls them in response to lysosomal damage. VIDEO ABSTRACT.


Asunto(s)
Autofagia , Galectinas/metabolismo , Lisosomas/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Tuberculosis/enzimología , Proteínas Quinasas Activadas por AMP/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Galectinas/deficiencia , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Lisosomas/microbiología , Lisosomas/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal , Células THP-1 , Serina-Treonina Quinasas TOR/genética , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/patología
3.
EMBO J ; 38(22): e101994, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31625181

RESUMEN

Mammalian homologs of yeast Atg8 protein (mAtg8s) are important in autophagy, but their exact mode of action remains ill-defined. Syntaxin 17 (Stx17), a SNARE with major roles in autophagy, was recently shown to bind mAtg8s. Here, we identified LC3-interacting regions (LIRs) in several SNAREs that broaden the landscape of the mAtg8-SNARE interactions. We found that Syntaxin 16 (Stx16) and its cognate SNARE partners all have LIR motifs and bind mAtg8s. Knockout of Stx16 caused defects in lysosome biogenesis, whereas a Stx16 and Stx17 double knockout completely blocked autophagic flux and decreased mitophagy, pexophagy, xenophagy, and ribophagy. Mechanistic analyses revealed that mAtg8s and Stx16 control several properties of lysosomal compartments including their function as platforms for active mTOR. These findings reveal a broad direct interaction of mAtg8s with SNAREs with impact on membrane remodeling in eukaryotic cells and expand the roles of mAtg8s to lysosome biogenesis.


Asunto(s)
Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Lisosomas/metabolismo , Proteínas Qa-SNARE/metabolismo , Sintaxina 16/metabolismo , Secuencias de Aminoácidos , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Células HEK293 , Células HeLa , Humanos , Redes y Vías Metabólicas , Unión Proteica , Dominios Proteicos , Proteínas Qa-SNARE/antagonistas & inhibidores , Proteínas Qa-SNARE/genética , ARN Interferente Pequeño/genética , Sintaxina 16/antagonistas & inhibidores , Sintaxina 16/genética
4.
EMBO J ; 36(1): 42-60, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27932448

RESUMEN

Autophagy is a process delivering cytoplasmic components to lysosomes for degradation. Autophagy may, however, play a role in unconventional secretion of leaderless cytosolic proteins. How secretory autophagy diverges from degradative autophagy remains unclear. Here we show that in response to lysosomal damage, the prototypical cytosolic secretory autophagy cargo IL-1ß is recognized by specialized secretory autophagy cargo receptor TRIM16 and that this receptor interacts with the R-SNARE Sec22b to recruit cargo to the LC3-II+ sequestration membranes. Cargo secretion is unaffected by downregulation of syntaxin 17, a SNARE promoting autophagosome-lysosome fusion and cargo degradation. Instead, Sec22b in combination with plasma membrane syntaxin 3 and syntaxin 4 as well as SNAP-23 and SNAP-29 completes cargo secretion. Thus, secretory autophagy utilizes a specialized cytosolic cargo receptor and a dedicated SNARE system. Other unconventionally secreted cargo, such as ferritin, is secreted via the same pathway.


Asunto(s)
Autofagia , Proteínas de Unión al ADN/metabolismo , Interleucina-1beta/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas R-SNARE/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Ferritinas/metabolismo , Humanos , Monocitos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
5.
EMBO Rep ; 20(9): e46238, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31347268

RESUMEN

The protein p62/Sequestosome 1 (p62) has been described as a selective autophagy receptor and independently as a platform for pro-inflammatory and other intracellular signaling. How these seemingly disparate functional roles of p62 are coordinated has not been resolved. Here, we show that TAK1, a kinase involved in immune signaling, negatively regulates p62 action in autophagy. TAK1 reduces p62 localization to autophagosomes, dampening the autophagic degradation of both p62 and p62-directed autophagy substrates. TAK1 also relocalizes p62 into dynamic cytoplasmic bodies, a phenomenon that accompanies the stabilization of TAK1 complex components. On the other hand, p62 facilitates the assembly and activation of TAK1 complexes, suggesting a connection between p62's signaling functions and p62 body formation. Thus, TAK1 governs p62 action, switching it from an autophagy receptor to a signaling platform. This ability of TAK1 to disable p62 as an autophagy receptor may allow certain autophagic substrates to accumulate when needed for cellular functions.


Asunto(s)
Autofagia/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Autofagosomas/metabolismo , Autofagia/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Quinasas Quinasa Quinasa PAM/genética , Microscopía Confocal , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteína Sequestosoma-1/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-30012752

RESUMEN

Host-directed therapy in tuberculosis is a potential adjunct to antibiotic chemotherapy directed at Mycobacterium tuberculosis Ambroxol, a lead compound, emerged from a screen for autophagy-inducing drugs. At clinically relevant doses, ambroxol induced autophagy in vitro and in vivo and promoted mycobacterial killing in macrophages. Ambroxol also potentiated rifampin activity in a murine tuberculosis model.


Asunto(s)
Ambroxol/farmacología , Antituberculosos/farmacología , Autofagia/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/farmacología , Tuberculosis/tratamiento farmacológico , Animales , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Tuberculosis/microbiología
7.
Autophagy ; 16(12): 2305-2306, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33070669

RESUMEN

Macroautophagy/autophagy delivers cytoplasmic cargo to lysosomes for degradation. In yeast, the single Atg8 protein plays a role in the formation of autophagosomes whereas in mammalian cells there are five to seven paralogs, referred to as mammalian Atg8s (mAtg8s: GABARAP, GABARAPL1, GABARAPL2, LC3A, LC3B, LC3B2 and LC3C) with incompletely defined functions. Here we show that a subset of mAtg8s directly control lysosomal biogenesis. This occurs at the level of TFEB, the principal regulator of the lysosomal transcriptional program. mAtg8s promote TFEB's nuclear translocation in response to stimuli such as starvation. GABARAP interacts directly with TFEB, whereas RNA-Seq analyses reveal that knockout of six genes encoding mAtg8s, or a triple knockout of the genes encoding all GABARAPs, diminishes the TFEB transcriptional program. We furthermore show that GABARAPs in cooperation with other proteins, IRGM, a factor implicated in tuberculosis and Crohn disease, and STX17, are required during starvation for optimal inhibition of MTOR, an upstream kinase of TFEB, and activation of the PPP3/calcineurin phosphatase that dephosphorylates TFEB, thus promoting its nuclear translocation. In conclusion, mAtg8s, IRGM and STX17 control lysosomal biogenesis by their combined or individual effects on MTOR, TFEB, and PPP3/calcineurin, independently of their roles in the formation of autophagosomal membranes. Abbreviations: AMPK: AMP-activated protein kinase; IRGM: immunity related GTPase M; mAtg8s: mammalian Atg8 proteins; MTOR: mechanistic target of rapamycin kinase; PPP3CB: protein phosphatase 3 catalytic subunit beta; RRAGA: Ras related GTP binding A.; STX17: syntaxin 17; ULK1: unc-51 like autophagy activating kinase 1.

9.
Nat Cell Biol ; 22(8): 973-985, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32753672

RESUMEN

Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/fisiología , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Unión al GTP/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Calcineurina/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/fisiología , Transporte de Proteínas , Proteínas Qa-SNARE/metabolismo
10.
Autophagy ; 16(8): 1550-1552, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32597364

RESUMEN

Lysosomal damage activates AMPK, a regulator of macroautophagy/autophagy and metabolism, and elicits a strong ubiquitination response. Here we show that the cytosolic lectin LGALS9 detects lysosomal membrane breach by binding to lumenal glycoepitopes, and directs both the ubiquitination response and AMPK activation. Proteomic analyses have revealed increased LGALS9 association with lysosomes, and concomitant changes in LGALS9 interactions with its newly identified partners that control ubiquitination-deubiquitination processes. An LGALS9-inetractor, deubiquitinase USP9X, dissociates from damaged lysosomes upon recognition of lumenal glycans by LGALS9. USP9X's departure from lysosomes promotes K63 ubiquitination and stimulation of MAP3K7/TAK1, an upstream kinase and activator of AMPK hitherto orphaned for a precise physiological function. Ubiquitin-activated MAP3K7/TAK1 controls AMPK specifically during lysosomal injury, caused by a spectrum of membrane-damaging or -permeabilizing agents, including silica crystals, the intracellular pathogen Mycobacterium tuberculosis, TNFSF10/TRAIL signaling, and the anti-diabetes drugs metformin. The LGALS9-ubiquitin system activating AMPK represents a novel signal transduction system contributing to various physiological outputs that are under the control of AMPK, including autophagy, MTOR, lysosomal maintenance and biogenesis, immunity, defense against microbes, and metabolic reprograming. ABBREVIATIONS: AMPK: AMP-activated protein kinase; APEX2: engineered ascorbate peroxidase 2; ATG13: autophagy related 13; ATG16L1: autophagy related 16 like 1; BMMs: bone marrow-derived macrophages; CAMKK2: calcium/calmodulin dependent protein kinase kinase 2; DUB: deubiquitinase; GPN: glycyl-L-phenylalanine 2-naphthylamide; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MERIT: membrane repair, removal and replacement; MTOR: mechanistic target of rapamycin kinase; STK11/LKB1: serine/threonine kinase 11; TNFSF10/TRAIL: TNF superfamily member 10; USP9X: ubiquitin specific peptidase 9 X-linked.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Galectinas/metabolismo , Lisosomas/patología , Transducción de Señal , Ubiquitina/metabolismo , Animales , Humanos , Lisosomas/metabolismo , Modelos Biológicos , Ubiquitinación
11.
Autophagy ; 16(8): 1539-1541, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521192

RESUMEN

Membrane integrity is essential for cellular survival and function. The spectrum of mechanisms protecting cellular and intracellular membranes is not fully known. Our recent work has uncovered a cellular system termed MERIT for lysosomal membrane repair, removal and replacement. Specifically, lysosomal membrane damage induces, in succession, ESCRT-dependent membrane repair, macroautophagy/autophagy-dominant removal of damaged lysosomes, and initiation of lysosomal biogenesis via transcriptional programs. The MERIT system is governed by galectins, a family of cytosolically synthesized lectins recognizing ß-galactoside glycans. We found in this study that LGALS3 (galectin 3) detects membrane damage by detecting exposed lumenal glycosyl groups, recruits and organizes ESCRT components PDCD6IP/ALIX, CHMP4A, and CHMPB at damaged sites on the lysosomes, and facilitates ESCRT-driven repair of lysosomal membrane. At later stages, LGALS3 cooperates with TRIM16, an autophagy receptor-regulator, to engage autophagy machinery in removal of excessively damaged lysosomes. In the absence of LGALS3, repair and autophagy are less efficient, whereas TFEB nuclear translocation increases to compensate lysosomal deficiency via de novo lysosomal biogenesis. The MERIT system protects endomembrane integrity against a broad spectrum of agents damaging the endolysosomal network including lysosomotropic drugs, Mycobacterium tuberculosis, or neurotoxic MAPT/tau. ABBREVIATIONS: AMPK: AMP-activated protein kinase; APEX2: engineered ascorbate peroxidase 2; ATG13: autophagy related 13; ATG16L1: autophagy related 16 like 1; BMMs: bone marrow-derived macrophages; ESCRT: endosomal sorting complexes required for transport; GPN: glycyl-L-phenylalanine 2-naphthylamide; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MERIT: membrane repair, removal and replacement; MTOR: mechanistic target of rapamycin kinase; TFEB: transcription factor EB; TFRC: transferrin receptor; TRIM16: tripartite motif-containing 16.


Asunto(s)
Membrana Celular/metabolismo , Lisosomas/metabolismo , Animales , Autofagia , Calcio/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Galectinas/metabolismo , Humanos , Modelos Biológicos
12.
Dev Cell ; 52(1): 69-87.e8, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31813797

RESUMEN

Endomembrane damage elicits homeostatic responses including ESCRT-dependent membrane repair and autophagic removal of damaged organelles. Previous studies have suggested that these systems may act separately. Here, we show that galectin-3 (Gal3), a ß-galactoside-binding cytosolic lectin, unifies and coordinates ESCRT and autophagy responses to lysosomal damage. Gal3 and its capacity to recognize damage-exposed glycans were required for efficient recruitment of the ESCRT component ALIX during lysosomal damage. Both Gal3 and ALIX were required for restoration of lysosomal function. Gal3 promoted interactions between ALIX and the downstream ESCRT-III effector CHMP4 during lysosomal repair. At later time points following lysosomal injury, Gal3 controlled autophagic responses. When this failed, as in Gal3 knockout cells, lysosomal replacement program took over through TFEB. Manifestations of this staged response, which includes membrane repair, removal, and replacement, were detected in model systems of lysosomal damage inflicted by proteopathic tau and during phagosome parasitism by Mycobacterium tuberculosis.


Asunto(s)
Autofagia , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Galectina 3/metabolismo , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Tuberculosis/prevención & control , Proteínas tau/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Glicosilación , Humanos , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/microbiología
13.
Carbohydr Polym ; 205: 581-588, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30446144

RESUMEN

A unique thermostable amylosucrase from Bifidobacterium thermophilum was produced as a recombinant protein with the half-life of 577 h at 50 °C. By adding 1.0 M fructose, turanose yield was improved from 22.7% to 43.3% with 1.0 M sucrose, and from 23.7% to 39.4% with 1.5 M sucrose. Sucrose consumption rate was greatest at 55 °C, but the lowest amount of turanose was produced. Thus, turanose yield from sucrose biomass was inversely proportional to reaction temperature and was highly dependent on [fructose]. Meanwhile, insoluble α-glucan yield was clearly reduced as [fructose] increased. With 1.0 M fructose + 1.0 M sucrose, glucan byproduct yield significantly decreased from 29.4% to 1.1%. Molecular weights of linear glucans were almost identical among various [sucrose]s and were homogenous with very low polydispersity. This unique dual reaction patterns of amylosucrase enzyme would be very useful for massive productions of two different biomaterials simply by changing sucrose biomass concentration.


Asunto(s)
Proteínas Bacterianas/química , Disacáridos/síntesis química , Glucanos/síntesis química , Glucosiltransferasas/química , Sacarosa/química , Edulcorantes/síntesis química , Bifidobacterium/enzimología , Fructosa/química , Glucosiltransferasas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Estabilidad Proteica , Proteínas Recombinantes/química , Temperatura
14.
Autophagy ; 15(1): 169-171, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30081722

RESUMEN

The Ser/Thr protein kinase MTOR (mechanistic target of rapamycin kinase) regulates cellular metabolism and controls macroautophagy/autophagy. Autophagy has both metabolic and quality control functions, including recycling nutrients at times of starvation and removing dysfunctional intracellular organelles. Lysosomal damage is one of the strongest inducers of autophagy, and yet mechanisms of its activation in response to lysosomal membrane damage are not fully understood. Our recent study has uncovered a new signal transduction system based on cytosolic galectins that elicits autophagy by controlling master regulators of metabolism and autophagy, MTOR and AMPK, in response to lysosomal damage. Thus, intracellular galectins are not, as previously thought, passive tags recognizing damage to guide selective autophagy receptors, but control the activation state of AMPK and MTOR in response to endomembrane damage. Abbreviations: MTOR: mechanistic target of rapamycin kinase; AMPK: AMP-activated protein kinase / Protein Kinase AMP-Activated; SLC38A9: Solute Carrier Family 38 Member 9; APEX2: engineered ascorbate peroxidase 2; RRAGA/B: Ras Related GTP Binding A or B; LAMTOR1: Late Endosomal/Lysosomal Adaptor, MAPK and MTOR Activator 1; LGALS8: Lectin, Galactoside-Binding, Soluble, 8 / Galectin 8; LGALS9: Lectin, Galactoside-Binding, Soluble, 9 / Galectin 9; TAK1: TGF-Beta Activated Kinase 1 / Mitogen-Activated Protein Kinase Kinase Kinase 7 (MAP3K7); STK11/LKB1: Serine/Threonine Kinase 11 / Liver Kinase B1; ULK1: Unc-51 Like Autophagy Activating Kinase 1.


Asunto(s)
Autofagia , Proteínas Quinasas Activadas por AMP , Galectinas , Lisosomas , Serina-Treonina Quinasas TOR
15.
Anal Biochem ; 383(2): 236-42, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18822267

RESUMEN

Using an established high-performance liquid chromatography (HPLC) method based on anion exchange chromatography, fraction collection, and electrochemical detection, the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OH-dG) can be analyzed rapidly and precisely in human urine samples. In addition, by ultraviolet (UV) detection, it was shown recently that it is possible to simultaneously analyze creatinine and 7-methylguanine (m(7)Gua), an RNA degradation product, in urine. By adding a fluorescence detector to the HPLC system, we now report that it is also possible to detect pteridins such as neopterin and biopterin. The fluorescence detection was evaluated in detail for neopterin, an immune response and tumor marker. The urinary content of neopterin, assessed by using the HPLC method, was verified with a commercial neopterin enzyme-linked immunosorbent assay (ELISA) kit as indicated by the high correlation between the two methods (r=0.98). In urinary samples from 58 young healthy individuals (male and female nonsmokers, ages 19-39 years), it was found that there was no significant correlation (r=-0.04) between the levels of 8-OH-dG and neopterin (as normalized to urinary creatinine levels). In contrast, in urinary samples from 60 old healthy individuals (male and female nonsmokers, ages 60-86 years), there was a significant correlation (r=0.47) found between the levels of 8-OH-dG and neopterin (as normalized to urinary creatinine levels). These findings strongly indicate that the higher level of immune response that was correlating with old age contributes significantly to the higher level of oxidative damage as assessed in the form of 8-OH-dG. Using this type of HPLC system, it is possible to evaluate oxidative DNA damage and immune response simultaneously using the respective urinary markers. These data may contribute to understanding of the pathophysiology of diseases such as infections and tumor progression where both oxidative stress and immune response occur simultaneously.


Asunto(s)
Envejecimiento/inmunología , Envejecimiento/orina , Biomarcadores/orina , Desoxiguanosina/análogos & derivados , Neopterin/inmunología , Neopterin/orina , Estrés Oxidativo , 8-Hidroxi-2'-Desoxicoguanosina , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Automatización , Cromatografía Líquida de Alta Presión , Desoxiguanosina/orina , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Factores de Tiempo
16.
J Cell Biol ; 217(3): 997-1013, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29420192

RESUMEN

Autophagy is a conserved eukaryotic process with metabolic, immune, and general homeostatic functions in mammalian cells. Mammalian autophagosomes fuse with lysosomes in a SNARE-driven process that includes syntaxin 17 (Stx17). How Stx17 translocates to autophagosomes is unknown. In this study, we show that the mechanism of Stx17 recruitment to autophagosomes in human cells entails the small guanosine triphosphatase IRGM. Stx17 directly interacts with IRGM, and efficient Stx17 recruitment to autophagosomes requires IRGM. Both IRGM and Stx17 directly interact with mammalian Atg8 proteins, thus being guided to autophagosomes. We also show that Stx17 is significant in defense against infectious agents and that Stx17-IRGM interaction is targeted by an HIV virulence factor Nef.


Asunto(s)
Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Qa-SNARE/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas de Unión al GTP/genética , Células HEK293 , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , Células HeLa , Humanos , Transporte de Proteínas/genética , Proteínas Qa-SNARE/genética , Células THP-1 , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
17.
Autophagy ; 13(5): 989-990, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-26983397

RESUMEN

Selectivity of autophagy is achieved by target recognition; however, the number of autophagy receptors identified so far is limited. In this study we demonstrate that a subset of tripartite motif (TRIM) proteins mediate selective autophagy of key regulators of inflammatory signaling. MEFV/TRIM20, and TRIM21 act as autophagic receptors recognizing their cognate targets and delivering them for autophagic degradation. MEFV recognizes the inflammasome components NLRP3, CASP1 and NLRP1, whereas TRIM21 specifically recognizes the activated, dimeric from of IRF3 inducing type I interferon gene expression. MEFV and TRIM21 have a second activity, whereby they act not only as receptors but also recruit and organize key components of autophagic machinery consisting of ULK1, BECN1, ATG16L1, and mammalian homologs of Atg8, with a preference for GABARAP. MEFV capacity to organize the autophagy apparatus is affected by common mutations causing familial Mediterranean fever. These findings reveal a general mode of action of TRIMs as autophagic receptor-regulators performing a highly-selective type of autophagy (precision autophagy), with MEFV specializing in the suppression of inflammasome and CASP1 activation engendering IL1B/interleukin-1ß production and implicated in the form of cell death termed pyroptosis, whereas TRIM21 dampens type I interferon responses.


Asunto(s)
Autofagia/fisiología , Proteínas Portadoras/inmunología , Inflamasomas/metabolismo , Transducción de Señal/inmunología , Animales , Humanos , Interleucina-1beta/metabolismo , Mutación/inmunología
18.
Autophagy ; 13(6): 1086-1087, 2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368693

RESUMEN

Macroautophagy/autophagy is a homeostatic process delivering cytoplasmic targets, including damaged organelles, to lysosomes for degradation; however, it is not completely understood how compromised endomembranes are recognized by the autophagic apparatus. We have described previously that the TRIM family of proteins act as receptors for selective autophagy. In this study we uncovered the property of TRIMs to directly interact with members of the family of cytosolic lectins termed galectins. Galectins patrol the cytoplasm and recognize compromised membranes. We show that TRIM16 uses LGALS3 (galectin 3) to detect damaged lysosomes and phagosomes. TRIM16 assembles the core autophagic machinery and is found in protein complexes with MTOR and TFEB, thus regulating their activity to set in motion endomembrane quality control. The TRIM16-LGALS3 system plays a key role in autophagic homeostasis of lysosomes and in the control of Mycobacterium tuberculosis in vivo.


Asunto(s)
Autofagia , Endosomas/metabolismo , Galectinas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Animales , Humanos , Lisosomas/metabolismo , Fagosomas/metabolismo
19.
Autophagy ; 13(6): 1084-1085, 2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368721

RESUMEN

Macroautophagy/autophagy plays a role in unconventional secretion of leaderless cytosolic proteins. Whether and how secretory autophagy diverges from conventional degradative autophagy is unclear. We have shown that the prototypical secretory autophagy cargo IL1B/IL-1ß (interleukin 1 ß) is recognized by TRIM16, and that this first to be identified secretory autophagy receptor interacts with the R-SNARE SEC22B to jointly deliver cargo to the MAP1LC3B-II-positive sequestration membranes. Cargo secretion is unaffected by knockdowns of STX17, a SNARE catalyzing autophagosome-lysosome fusion as a prelude to cargo degradation. Instead, SEC22B in combination with plasma membrane syntaxins completes cargo secretion. Thus, secretory autophagy diverges from degradative autophagy by using specialized receptors and a dedicated SNARE machinery to bypass fusion with lysosomes.


Asunto(s)
Autofagia , Vías Secretoras , Humanos , Lisosomas/metabolismo , Fusión de Membrana , Modelos Biológicos , Fagosomas/metabolismo , Proteínas SNARE/metabolismo
20.
J Agric Food Chem ; 64(21): 4371-5, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27169988

RESUMEN

A novel enzymatic process for cyclodextrin (CD) production was developed by utilizing sucrose as raw material instead of corn starch. Cyclodextrin glucanotransferase (CGTase) from Bacillus macerans was applied to produce the CDs from linear α-(1,4)-glucans, which were obtained by Neisseria polysaccharea amylosucrase (NpAS) treatment on sucrose. The greatest CD yield (21.1%, w/w) was achieved from a one-pot dual enzyme reaction at 40 °C for 24 h. The maximum level of CD production (15.1 mg/mL) was achieved with 0.5 M sucrose in a simultaneous mode of dual enzyme reaction, whereas the reaction with 0.1 M sucrose was the most efficient with regard to conversion yield. Consequently, dual enzyme synthesis of CDs was successfully carried out with no need of starch material. This result can be applied as a novel efficient bioconversion process that does not require the high temperature necessary for starch liquefaction by thermostable α-amylase in conventional industrial processing.


Asunto(s)
Proteínas Bacterianas/química , Ciclodextrinas/química , Glucosiltransferasas/química , Neisseria/enzimología , Bacillus/enzimología , Proteínas Bacterianas/metabolismo , Biocatálisis , Ciclodextrinas/metabolismo , Glucosiltransferasas/metabolismo , Almidón/química , Almidón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA