Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Funct Mater ; 30(25)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-33244297

RESUMEN

In this study, we report nanopatterned Nafion microelectrode arrays for in vitro cardiac electrophysiology. With the aim of defining sophisticated Nafion nanostructures with highly ionic conductivity, fabrication parameters such as Nafion concentration and curing temperature were optimized. By increasing curing temperature and Nafion concentration, we were able to control the replication fidelity of Nafion nanopatterns when copied from a PDMS master mold. We also found that cross-sectional morphology and ion current density of nanopatterned Nafion strongly depends on the fabrication parameters. To investigate this dependency, current-voltage analysis was conducted using organic electrochemical transistors (OECT) overlaid with patterned Nafion substrates. Nanopatterned Nafion was found to allow higher ion current densities than unpatterned surfaces. Furthermore, higher curing temperatures were found to render Nafion layers with higher ion/electrical transfer properties. To optimize nanopattern dimensions, electrical current flows, and film uniformity, a final configuration consisting of 5% nanopatterned Nafion cured at 65°C was chosen. Multielectrode arrays (MEAs) were then covered with optimized Nafion nanopatterns and used for electrophysiological analysis of two types of induced pluripotent stem cell-derived cardiomyocytes (iPSCs-CMs). These data highlight the suitability of nanopatterned Nafion, combined with MEAs, for enhancing the cellular environment of iPSC-CMs for use in electrophysiological analysis in vitro.

2.
Biomed Microdevices ; 18(1): 10, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26797026

RESUMEN

Many bioactive molecules have intracellular targets, but have difficulty crossing the cell membrane to reach those targets. To address this difficulty, we fabricated arrays of nanoneedles to gently and simultaneously puncture 10(5) cells and thereby provide transient pathways for transport of molecules into the cells. The nanoneedles were microfabricated by etching silicon to create arrays of nanoneedles measuring 12 µm in height, tapering to a sharp tip less than 30 nm wide to facilitate puncture into cells and spaced 10 µm apart in order to have at least one nanoneedle puncture each cell in a confluent monolayer. These nanoneedles were used for intracellular delivery in two ways: puncture loading, in which nanoneedle arrays were pressed into cell monolayers, and centrifuge loading, in which cells in suspension were spun down onto nanoneedle arrays. The effects on intracellular uptake and cell viability were determined as a function of nanoneedle length and sharpness, puncture force and duration, and molecular weight of the molecule delivered. Under optimal conditions, intracellular uptake was seen in approximately 50 % of cells while maintaining high cell viability. Overall, this study provides a comparative analysis of intracellular delivery using nanoneedle arrays by two different loading methods over a range of operating parameters.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras , Agujas , Línea Celular Tumoral , Supervivencia Celular , Humanos , Masculino
3.
Opt Express ; 19 Suppl 4: A793-803, 2011 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-21747548

RESUMEN

We report on ITO-free large-area organic light-emitting diodes (OLEDs) fabricated on glass substrates comprising α-NPD as a hole transport layer (HTL) and coevaporated CBP:Ir(ppy)(3) as the emission layer. Indium-tin-oxide (ITO) was replaced with a conductive polymer electrode and an electroplated thick metal grid was used to improve the homogeneity of the potential distribution over the transparent polymer electrode. An electrical model of a metal grid integrated OLED shows the benefits of the use of metal grids in terms of improving the uniformity of the light emitted as the area of the OLED increases as well as the conductivity of the transparent electrode decreases. By integrating metal grids with polymer electrodes, the luminance increases more than 24% at 6 V and 45% at 7 V compared to the polymer electrode devices without a metal grid. This implies that a lower voltage can be applied to achieve the same luminance, hence lowering the power consumption. Furthermore, metal grid integrated OLEDs exhibited less variation in light emission compared to devices without a metal grid.

4.
Opt Express ; 18 Suppl 3: A458-66, 2010 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21165076

RESUMEN

We report on large-area pentacene / C60 organic solar cells in which indium-tin-oxide (ITO) is replaced with a conductive polymer electrode and a 5 µm-thick metal grid is used to reduce resistive power losses. The performance of cells with the polymer electrode was compared with that of pentacene / C60 devices using ITO as the transparent electrode. For large-area devices (7.3 cm²) on glass substrates with an integrated metal grid, the performance of a device with the polymer electrode is comparable to that of a device with an ITO electrode combined with a grid.

5.
Opt Lett ; 34(4): 512-4, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19373358

RESUMEN

Variable-ratio power splitters using computer-generated planar holograms on multimode interference couplers are analyzed. The coherent wave at the device input is transformed to the desired output using numerically calculated refractive index perturbations on multimode channel waveguides at half the beat length. Devices are fabricated on the silicon-on-insulator platform and characterized at a wavelength of 1.55 mum. Power-splitting ratios are varied by changing the hologram etch depth and the hologram length.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA