Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(35): 8805-8810, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104362

RESUMEN

During heart development and regeneration, coronary vascularization is tightly coupled with cardiac growth. Although inhibiting vascularization causes defects in the innate regenerative response of zebrafish to heart injury, angiogenic signals are not known to be sufficient for triggering regeneration events. Here, by using a transgenic reporter strain, we found that regulatory sequences of the angiogenic factor vegfaa are active in epicardial cells of uninjured animals, as well as in epicardial and endocardial tissue adjacent to regenerating muscle upon injury. Additionally, we find that induced cardiac overexpression of vegfaa in zebrafish results in overt hyperplastic thickening of the myocardial wall, accompanied by indicators of angiogenesis, epithelial-to-mesenchymal transition, and cardiomyocyte regeneration programs. Unexpectedly, vegfaa overexpression in the context of cardiac injury enabled ectopic cardiomyogenesis but inhibited regeneration at the site of the injury. Our findings identify Vegfa as one of a select few known factors sufficient to activate adult cardiomyogenesis, while also illustrating how instructive factors for heart regeneration require spatiotemporal control for efficacy.


Asunto(s)
Cardiomegalia/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Transición Epitelial-Mesenquimal , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patología , Miocardio/patología , Miocitos Cardíacos/patología , Factor A de Crecimiento Endotelial Vascular/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
2.
Development ; 140(3): 660-6, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293297

RESUMEN

Adult mammalian cardiomyocytes have little capacity to proliferate in response to injury, a deficiency that underlies the poor regenerative ability of human hearts after myocardial infarction. By contrast, zebrafish regenerate heart muscle after trauma by inducing proliferation of spared cardiomyocytes, providing a model for identifying manipulations that block or enhance these events. Although direct genetic or chemical screens of heart regeneration in adult zebrafish present several challenges, zebrafish embryos are ideal for high-throughput screening. Here, to visualize cardiomyocyte proliferation events in live zebrafish embryos, we generated transgenic zebrafish lines that employ fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. We then performed a chemical screen and identified several small molecules that increase or reduce cardiomyocyte proliferation during heart development. These compounds act via Hedgehog, Insulin-like growth factor or Transforming growth factor ß signaling pathways. Direct examination of heart regeneration after mechanical or genetic ablation injuries indicated that these pathways are activated in regenerating cardiomyocytes and that they can be pharmacologically manipulated to inhibit or enhance cardiomyocyte proliferation during adult heart regeneration. Our findings describe a new screening system that identifies molecules and pathways with the potential to modify heart regeneration.


Asunto(s)
Proliferación Celular , Corazón/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Miocitos Cardíacos/citología , Regeneración , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/metabolismo , Animales Modificados Genéticamente/fisiología , Biomarcadores/metabolismo , Catecoles/farmacología , Recuento de Células , Ciclohexilaminas/farmacología , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/fisiología , Femenino , Corazón/embriología , Proteínas Hedgehog/agonistas , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Isoquinolinas/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Tiofenos/farmacología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Transgenes , Ubiquitinación , Pez Cebra/genética , Pez Cebra/lesiones , Pez Cebra/fisiología
3.
Nature ; 450(7167): E1-2; discussion E2-4, 2007 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-17994032

RESUMEN

In fish and amphibians, the dorsal axis is specified by the asymmetric localization of maternally provided components of the Wnt signalling pathway. Gore et al. suggest that the Nodal signal Squint (Sqt) is required as a maternally provided dorsal determinant in zebrafish. Here we test their proposal and show that the maternal activities of sqt and the related Nodal gene cyclops (cyc) are not required for dorsoventral patterning.


Asunto(s)
Tipificación del Cuerpo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Embrión no Mamífero/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Biológicos , Madres , Ligandos de Señalización Nodal , Ovario/metabolismo , Óvulo/metabolismo , Empalme del ARN , Reproducibilidad de los Resultados , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
4.
Neuron ; 57(1): 41-55, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18184563

RESUMEN

MicroRNAs (miRNAs) are highly expressed in vertebrate neural tissues, but the contribution of specific miRNAs to the development and function of different neuronal populations is still largely unknown. We report that miRNAs are required for terminal differentiation of olfactory precursors in both mouse and zebrafish but are dispensable for proper function of mature olfactory neurons. The repertoire of miRNAs expressed in olfactory tissues contains over 100 distinct miRNAs. A subset, including the miR-200 family, shows high olfactory enrichment and expression patterns consistent with a role during olfactory neurogenesis. Loss of function of the miR-200 family phenocopies the terminal differentiation defect observed in absence of all miRNA activity in olfactory progenitors. Our data support the notion that vertebrate tissue differentiation is controlled by conserved subsets of organ-specific miRNAs in both mouse and zebrafish and provide insights into control mechanisms underlying olfactory differentiation in vertebrates.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular , MicroARNs/fisiología , Neuronas/fisiología , Vías Olfatorias/citología , Factores de Edad , Animales , Embrión no Mamífero , Células Madre Embrionarias/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , MicroARNs/clasificación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Vías Olfatorias/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Pez Cebra
5.
Dev Cell ; 48(6): 853-863.e5, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30713073

RESUMEN

Attaining proper organ size during development and regeneration hinges on the activity of mitogenic factors. Here, we performed a large-scale chemical screen in embryonic zebrafish to identify cardiomyocyte mitogens. Although commonly considered anti-proliferative, vitamin D analogs like alfacalcidol had rapid, potent mitogenic effects on embryonic and adult cardiomyocytes in vivo. Moreover, pharmacologic or genetic manipulation of vitamin D signaling controlled proliferation in multiple adult cell types and dictated growth rates in embryonic and juvenile zebrafish. Tissue-specific modulation of vitamin D receptor (VDR) signaling had organ-restricted effects, with cardiac VDR activation causing cardiomegaly. Alfacalcidol enhanced the regenerative response of injured zebrafish hearts, whereas VDR blockade inhibited regeneration. Alfacalcidol activated cardiac expression of genes associated with ErbB2 signaling, while ErbB2 inhibition blunted its effects on cell proliferation. Our findings identify vitamin D as mitogenic for cardiomyocytes and other cell types in zebrafish and indicate a mechanism to regulate organ size and regeneration.


Asunto(s)
Corazón/anatomía & histología , Corazón/fisiología , Miocitos Cardíacos/citología , Regeneración/efectos de los fármacos , Vitamina D/farmacología , Pez Cebra/anatomía & histología , Pez Cebra/fisiología , Animales , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Corazón/efectos de los fármacos , Mitógenos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Especificidad de Órganos , Transducción de Señal/efectos de los fármacos , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
6.
Circ Cardiovasc Genet ; 8(4): 544-52, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26025024

RESUMEN

BACKGROUND: Left ventricular noncompaction (LVNC) is an autosomal-dominant, genetically heterogeneous cardiomyopathy with variable severity, which may co-occur with cardiac hypertrophy. METHODS AND RESULTS: Here, we generated whole exome sequence data from multiple members from 5 families with LVNC. In 4 of 5 families, the candidate causative mutation segregates with disease in known LVNC genes MYH7 and TPM1. Subsequent sequencing of MYH7 in a larger LVNC cohort identified 7 novel likely disease causing variants. In the fifth family, we identified a frameshift mutation in NNT, a nuclear-encoded mitochondrial protein, not implicated previously in human cardiomyopathies. Resequencing of NNT in additional LVNC families identified a second likely pathogenic missense allele. Suppression of nnt in zebrafish caused early ventricular malformation and contractility defects, probably driven by altered cardiomyocyte proliferation. In vivo complementation studies showed that mutant human NNT failed to rescue nnt morpholino-induced heart dysfunction, indicating a probable haploinsufficiency mechanism. CONCLUSIONS: Together, our data expand the genetic spectrum of LVNC and demonstrate how the intersection of whole exome sequence with in vivo functional studies can accelerate the identification of genes that drive human genetic disorders.


Asunto(s)
Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad/genética , No Compactación Aislada del Miocardio Ventricular/genética , NADP Transhidrogenasa AB-Específica/genética , Animales , Animales Modificados Genéticamente , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Exoma/genética , Salud de la Familia , Femenino , Prueba de Complementación Genética , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Microscopía Confocal , Proteínas Mitocondriales/genética , Linaje , Análisis de Secuencia de ADN , Pez Cebra/embriología , Pez Cebra/genética
7.
Dev Cell ; 34(4): 387-99, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26256209

RESUMEN

Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.


Asunto(s)
Neuronas Colinérgicas/fisiología , Corazón/inervación , Corazón/fisiología , Miocitos Cardíacos/citología , Regeneración , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Proliferación Celular/efectos de los fármacos , Desnervación , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad/efectos de los fármacos , Inmunidad/genética , Inflamación/genética , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Factor de Crecimiento Nervioso/farmacología , Neurregulina-1/farmacología , Regeneración/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Vagotomía , Pez Cebra
8.
Curr Top Dev Biol ; 100: 319-44, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22449849

RESUMEN

The heart is a pump that is comprised of cardiac myocytes and other cell types and whose proper function is critical to quality of life. The ability to trigger regeneration of heart muscle following injury eludes adult mammals, a deficiency of great clinical impact. Major research efforts are attempting to change this through advances in cell therapy or activating endogenous regenerative mechanisms that exist only early in life. In contrast with mammals, lower vertebrates like zebrafish demonstrate an impressive natural capacity for cardiac regeneration throughout life. This review will cover recent progress in the field of heart regeneration with a focus on endogenous regenerative capacity and its potential manipulation.


Asunto(s)
Corazón/fisiología , Regeneración , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Modelos Animales de Enfermedad , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/terapia , Humanos
9.
Science ; 318(5848): 271-4, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17761850

RESUMEN

MicroRNAs (miRNAs) repress hundreds of target messenger RNAs (mRNAs), but the physiological roles of specific miRNA-mRNA interactions remain largely elusive. We report that zebrafish microRNA-430 (miR-430) dampens and balances the expression of the transforming growth factor-beta (TGF-beta) Nodal agonist squint and the TGF-beta Nodal antagonist lefty. To disrupt the interaction of specific miRNA-mRNA pairs, we developed target protector morpholinos complementary to miRNA binding sites in target mRNAs. Protection of squint or lefty mRNAs from miR-430 resulted in enhanced or reduced Nodal signaling, respectively. Simultaneous protection of squint and lefty or absence of miR-430 caused an imbalance and reduction in Nodal signaling. These findings establish an approach to analyze the in vivo roles of specific miRNA-mRNA pairs and reveal a requirement for miRNAs in dampening and balancing agonist/antagonist pairs.


Asunto(s)
MicroARNs/metabolismo , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Regiones no Traducidas 3' , Animales , Embrión no Mamífero/fisiología , Desarrollo Embrionario , Regulación de la Expresión Génica , Factores de Determinación Derecha-Izquierda , Mutación , Proteína Nodal , Ligandos de Señalización Nodal , ARN Mensajero/genética , Factor de Crecimiento Transformador beta/agonistas , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Pez Cebra/embriología , Pez Cebra/metabolismo
10.
Electrophoresis ; 26(6): 1144-54, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15704246

RESUMEN

We report the development of a hand-held instrument capable of performing two simultaneous microchip separations (gel and zone electrophoresis), and demonstrate this instrument for the detection of protein biotoxins. Two orthogonal analysis methods are chosen over a single method in order to improve the probability of positive identification of the biotoxin in an unknown mixture. Separations are performed on a single fused-silica wafer containing two separation channels. The chip is housed in a microfluidic manifold that utilizes o-ring sealed fittings to enable facile and reproducible fluidic connection to the chip. Sample is introduced by syringe injection into a septum-sealed port on the device exterior that connects to a sample loop etched onto the chip. Detection of low nanomolar concentrations of fluorescamine-labeled proteins is achieved using a miniaturized laser-induced fluorescence detection module employing two diode lasers, one per separation channel. Independently controlled miniature high-voltage power supplies enable fully programmable electrokinetic sample injection and analysis. As a demonstration of the portability of this instrument, we evaluated its performance in a laboratory field test at the Defence Science and Technology Laboratory with a series of biotoxin variants. The two separation methods cleanly distinguish between members of a biotoxin test set. Analysis of naturally occurring variants of ricin and two closely related staphylococcal enterotoxins indicates the two methods can be used to readily identify ricin in its different forms and can discriminate between two enterotoxin isoforms.


Asunto(s)
Electroforesis por Microchip/métodos , Técnicas Analíticas Microfluídicas/métodos , Toxinas Biológicas/aislamiento & purificación , Electroforesis por Microchip/instrumentación , Enterotoxinas/aislamiento & purificación , Equipo Reutilizado , Miniaturización , Ricina/aislamiento & purificación , Ricinus/química , Sensibilidad y Especificidad , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA