RESUMEN
OBJECTIVE: To comprehensively characterize androgens and androgen precursors in classic 21-hydroxylase deficiency (21OHD) and to gain insights into the mechanisms of their formation. DESIGN: Serum samples were obtained from 38 patients (19 men) with classic 21OHD, aged 3-59, and 38 sex- and age-matched controls; 3 patients with 11ß-hydroxylase deficiency; 4 patients with adrenal insufficiency; and 16 patients (8 men) undergoing adrenal vein sampling. Paraffin-embedded normal (n = 5) and 21OHD adrenal tissues (n = 3) were used for immunohistochemical studies. METHODS: We measured 11 steroids in all sera by liquid chromatography-tandem mass spectrometry. Immunofluroescence localized 3ß-hydroxysteroid dehydrogenase type 2 (HSD3B2) and cytochrome b5 (CYB5A) within the normal and 21OHD adrenals. RESULTS: Four 11-oxygenated 19-carbon (11oxC19) steroids were significantly higher in male and female 21OHD patients than in controls: 11ß-hydroxyandrostenedione, 11-ketoandrostenedione 11ß-hydroxytestosterone, and 11-ketotestosterone (3-4-fold, P < 0.0001). For 21OHD patients, testosterone and 11-ketotestosterone were positively correlated in females, but inversely correlated in males. All 11oxC19 steroids were higher in the adrenal vein than in the inferior vena cava samples from men and women and rose with cosyntropin stimulation. Only trace amounts of 11oxC19 steroids were found in the sera of patients with 11ß-hydroxylase deficiency and adrenal insufficiency, confirming their adrenal origin. HSD3B2 and CYB5A immunoreactivities were sharply segregated in the normal adrenal glands, whereas areas of overlapping expression were identified in the 21OHD adrenals. CONCLUSIONS: All four 11oxC19 steroids are elevated in both men and women with classic 21OHD. Our data suggest that 11oxC19 steroids are specific biomarkers of adrenal-derived androgen excess.
Asunto(s)
Hiperplasia Suprarrenal Congénita/sangre , Cetosteroides/sangre , Testosterona/análogos & derivados , Testosterona/sangre , Adolescente , Adulto , Biomarcadores/sangre , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores Sexuales , Adulto JovenRESUMEN
Androgen and estrogen biosynthesis in mammals requires the 17,20-lyase activity of cytochrome P450 17A1 (steroid 17-hydroxylase/17,20-lyase). Maximal 17,20-lyase activity in vitro requires the presence of cytochrome b5 (b5), and rare cases of b5 deficiency in human beings causes isolated 17,20-lyase deficiency. To study the consequences of conditional b5 removal from testicular Leydig cells in an animal model, we generated Cyb5(flox/flox):Sf1-Cre (LeyKO) mice. The LeyKO male mice had normal body weights, testis and sex organ weights, and fertility compared with littermates. Basal serum and urine steroid profiles of LeyKO males were not significantly different than littermates. In contrast, marked 17-hydroxyprogesterone accumulation (100-fold basal) and reduced testosterone synthesis (27% of littermates) were observed after human chorionic gonadotropin stimulation in LeyKO animals. Testis homogenates from LeyKO mice showed reduced 17,20-lyase activity and a 3-fold increased 17-hydroxylase to 17,20-lyase activity ratio, which were restored to normal upon addition of recombinant b5. We conclude that Leydig cell b5 is required for maximal androgen synthesis and to prevent 17-hydroxyprogesterone accumulation in the mouse testis; however, the b5-independent 17,20-lyase activity of mouse steroid 17-hydroxylase/17,20-lyase is sufficient for normal male genital development and fertility. LeyKO male mice are a good model for the biochemistry but not the physiology of isolated 17,20-lyase deficiency in human beings.
Asunto(s)
Citocromos b5/genética , Células Intersticiales del Testículo/enzimología , Esteroide 17-alfa-Hidroxilasa/metabolismo , 17-alfa-Hidroxiprogesterona/sangre , Animales , Citocromos b5/metabolismo , Femenino , Fertilidad , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , FenotipoRESUMEN
BACKGROUND/AIMS: The pathogenesis of obesity-associated hypertension is poorly understood. Serum cortisol-to-cortisone ratio (F/E ratio) is a marker of cortisol metabolism. Our objective was to determine whether the serum F/E ratio is associated with blood pressure (BP) in patients after significant weight loss (≥15% from baseline weight). METHODS: Sera from 43 nondiabetic, severely obese males participating in a weight management program were assayed for F and E by mass spectrometry. We assessed whether changes in the F/E ratio accompanying weight loss correlate with changes in the systolic (SBP) and diastolic BP (DBP). Linear regression was used to evaluate change in the F/E ratio as a predictor of change in BP. RESULTS: The body mass index decreased from 40.8 ± 5.6 to 33.7 ± 4.8 (p < 0.001); also, SBP (133.2 ± 13.8 vs. 124.1 ± 14.3 mm Hg; p < 0.001) and DBP (69.8 ± 8.0 vs. 66.6 ± 9.4 mm Hg; p = 0.026) decreased during the study. The baseline F/E ratio tended to associate with baseline DBP (Spearman's r = -0.29, p = 0.06), and change in the serum F/E ratio correlated with change in DBP (Spearman's r = -0.32, p = 0.036). Change in the F/E ratio also tended to associate with change in SBP (Spearman's r = -0.27, p = 0.08). A multiple linear regression model adjusted for change in the F/E ratio and age explained 22% of the variance in SBP change (R(2) = 0.22, p = 0.007). Change in the F/E ratio independently predicted change in SBP (p = 0.036). CONCLUSION: In our sample of nondiabetic, severely obese males, change in the serum F/E ratio was associated with change in BP after weight loss.
RESUMEN
CONTEXT: Marked elevations of 17-hydroxyprogesterone (17OHP) are characteristic of classic 21-hydroxylase deficiency (21OHD). Testing of 17OHP provides the basis for 21OHD diagnosis, although it suffers from several pitfalls. False-positive or false-negative results and poor discrimination of nonclassic 21OHD from carriers limit the utility of serum 17OHP and necessitate dynamic testing after cosyntropin stimulation when values are indeterminate. OBJECTIVE: The objective was to provide a detailed characterization of 21-carbon (C21) steroids in classic 21OHD, which might identify other candidate steroids that could be employed for the diagnosis of 21OHD. SETTING AND PARTICIPANTS: Patients (11 women, 10 men) with classic 21OHD and 21 sex- and age-matched controls seen in a tertiary referral center were studied. METHODS: C21 steroids in the peripheral sera from all subjects, as well as in media from cultured testicular adrenal rest tumor (TART) cells and normal adrenal (NA) cells, were analyzed using liquid chromatography/tandem mass spectrometry (10 steroids). Additionally, the dynamics of C21 steroid metabolism in TART and NA cells were assessed with radiotracer studies. RESULTS: Five C21 steroids were significantly higher in 21OHD patients: 17OHP (67-fold; P < .01), 21-deoxycortisol (21dF; 35-fold; P < .01), 16α-hydroxyprogesterone (16OHP; 28-fold; P < .01), progesterone (2-fold; P < .01), and 11ß-hydroxyprogesterone (11OHP; not detected in controls; P < .01). The same steroids were the highest in media from TART cells relative to the NA cells: 11OHP, 58- to 65-fold; 21dF, 30- to 41-fold; 17OHP, 9-fold; progesterone, 9- to 12-fold; and 16OHP, 7-fold. CONCLUSION: Measurement of 16OHP and 11OHP along with 17OHP and 21dF by liquid chromatography/tandem mass spectrometry might comprise a biomarker panel to accurately diagnose all forms of 21OHD.