Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Drug Metab Dispos ; 51(10): 1284-1294, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37349116

RESUMEN

GDC-0810 is a small molecule therapeutic agent having potential to treat breast cancer. In plasma of the first-in-human study, metabolite M2, accounting for 20.7% of total drug-related materials, was identified as a discrete diglucuronide that was absent in rats. Acyl glucuronide M6 and N-glucuronide M4 were also identified as prominent metabolites in human plasma. Several in vitro studies were conducted in incubations of [14C]GDC-0810, synthetic M6 and M4 with liver microsomes, intestinal microsomes, and hepatocytes of different species as well as recombinant UDP-glucuronosyltransferase (UGT) enzymes to further understand the formation of M2. The results suggested that 1) M2 was more efficiently formed from M6 than from M4, and 2) acyl glucuronidation was mainly catalyzed by UGT1A8/7/1 that is highly expressed in the intestines whereas N-glucuronidation was mainly catalyzed by UGT1A4 that is expressed in the human liver. This complicated mechanism presented challenges in predicting M2 formation using human in vitro systems. The absence of M2 and M4 in rats can be explained by low to no expression of UGT1A4 in rodents. M2 could be the first discrete diglucuronide that was formed from both acyl- and N-glucuronidation on a molecule identified in human plasma. SIGNIFICANCE STATEMENT: A discrete diglucuronidation metabolite of GDC-0810, a breast cancer drug candidate, was characterized as a unique circulating metabolite in humans that was not observed in rats or little formed in human in vitro system.


Asunto(s)
Neoplasias de la Mama , Glucurónidos , Humanos , Ratas , Animales , Femenino , Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , UDP Glucuronosiltransferasa 1A9 , Administración Oral , Neoplasias de la Mama/metabolismo
2.
Haematologica ; 106(4): 1034-1046, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32414851

RESUMEN

FLT3 internal tandem duplication (FLT3-ITD) mutations account for ~25% of adult acute myeloid leukemia cases and are associated with poor prognosis. Venetoclax, a selective BCL-2 inhibitor, has limited monotherapy activity in relapsed/refractory acute myeloid leukemia with no responses observed in a small subset of FLT3-ITD+ patients. Further, FLT3-ITD mutations emerged at relapse following venetoclax monotherapy and combination therapy suggesting a potential mechanism of resistance. Therefore, we investigated the convergence of FLT3-ITD signaling on the BCL-2 family proteins and determined combination activity of venetoclax and FLT3-ITD inhibition in preclinical models. In vivo, venetoclax combined with quizartinib, a potent FLT3 inhibitor, showed greater anti-tumor efficacy and prolonged survival compared to monotherapies. In a patient-derived FLT3-ITD+ xenograft model, cotreatment with venetoclax and quizartinib at clinically relevant doses had greater anti-tumor activity in the tumor microenvironment compared to quizartinib or venetoclax alone. Use of selective BCL-2 family inhibitors further identified a role for BCL-2, BCL-XL and MCL-1 in mediating survival in FLT3-ITD+ cells in vivo and highlighted the need to target all three proteins for greatest anti-tumor activity. Assessment of these combinations in vitro revealed synergistic combination activity for quizartinib and venetoclax but not for quizartinib combined with BCL-XL or MCL-1 inhibition. FLT3-ITD inhibition was shown to indirectly target both BCL-XL and MCL-1 through modulation of protein expression, thereby priming cells toward BCL-2 dependence for survival. These data demonstrate that FLT3-ITD inhibition combined with venetoclax has impressive anti-tumor activity in FLT3-ITD+ acute myeloid leukemia preclinical models and provides strong mechanistic rational for clinical studies.


Asunto(s)
Leucemia Mieloide Aguda , Adulto , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Inhibidores de Proteínas Quinasas , Sulfonamidas/farmacología , Microambiente Tumoral , Tirosina Quinasa 3 Similar a fms/genética
3.
Drug Metab Dispos ; 48(9): 819-829, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32616543

RESUMEN

After oral administration to monkeys of [14C]GDC-0810, an α,ß-unsaturated carboxylic acid, unchanged parent and its acyl glucuronide metabolite, M6, were the major circulating drug-related components. In addition, greater than 50% of circulating radioactivity in plasma was found to be nonextractable 12 hours post-dose, suggesting possible covalent binding to plasma proteins. In the same study, one of the minor metabolites was a cysteine conjugate of M6 (M11) that was detected in plasma and excreta (urine and bile). The potential mechanism for the covalent binding to proteins was further investigated using in vitro methods. In incubations with glutathione (GSH) or cysteine (5 mM), GSH and cysteine conjugates of M6 were identified, respectively. The cysteine reaction was efficient with a half-life of 58.6 minutes (k react = 0.04 1/M per second). Loss of 176 Da (glucuronic acid) followed by 129 Da (glutamate) in mass fragmentation analysis of the GSH adduct of M6 (M13) suggested the glucuronic acid moiety was not modified. The conjugation of N-glucuronide M4 with cysteine in buffer was >1000-fold slower than with M6. Incubations of GDC-0810, M4, or M6 with monkey or human liver microsomes in the presence of NADPH and GSH did not produce any oxidative GSH adducts, and the respective substrates were qualitatively recovered. In silico analysis quantified the inherent reactivity differences between the glucuronide and its acid precursor. Collectively, these results show that acyl glucuronidation of α,ß-unsaturated carboxylic acids can activate the compound toward reactivity with GSH, cysteine, or other biologically occurring thiols and should be considered during the course of drug discovery. SIGNIFICANCE STATEMENT: Acyl glucuronidation of the α,ß-unsaturated carboxylic acid in GDC-0810 activates the conjugated alkene toward nucleophilic addition by glutathione or other reactive thiols. This is the first example that a bioactivation mechanism could lead to protein covalent binding to α,ß-unsaturated carboxylic acid compounds.


Asunto(s)
Antineoplásicos Hormonales/farmacocinética , Ácidos Carboxílicos/farmacocinética , Cinamatos/farmacocinética , Glucurónidos/metabolismo , Indazoles/farmacocinética , Administración Oral , Animales , Antineoplásicos Hormonales/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ácidos Carboxílicos/administración & dosificación , Cinamatos/administración & dosificación , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Indazoles/administración & dosificación , Macaca fascicularis , Microsomas Hepáticos , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/metabolismo
4.
Toxicol Pathol ; 48(3): 465-480, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32124659

RESUMEN

Cyclic adenosine monophosphate-response element (CREB)-binding protein (CBP) and EP300E1A-binding protein (p300) are members of the bromodomain and extraterminal motif (BET) family. These highly homologous proteins have a key role in modulating transcription, including altering the status of chromatin or through interactions with or posttranslational modifications of transcription factors. As CBP and p300 have known roles for stimulating c-Myc oncogenic activity, a small-molecule inhibitor, GNE-781, was developed to selectively and potently inhibit the CBP/p300 bromodomains (BRDs). Genetic models have been challenging to develop due to embryonic lethality arising from germline homozygous mutations in either CBP or P300. Hence, the purpose of this study was to characterize the role of dual inhibition of these proteins in adult rats and dogs. Repeat dose toxicity studies were conducted, and toxicologic and pathologic end points were assessed. GNE-781 was generally tolerated; however, marked effects on thrombopoiesis occurred in both species. Evidence of inhibition of erythroid, granulocytic, and lymphoid cell differentiation was also present, as well as deleterious changes in gastrointestinal and reproductive tissues. These findings are consistent with many preclinical (and clinical) effects reported with BET inhibitors targeting BRD proteins; thus, the current study findings indicate a likely important role for CBP/p300 in stem cell differentiation.


Asunto(s)
Pirazoles/farmacología , Piridinas/farmacología , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Animales , Perros , Evaluación Preclínica de Medicamentos/métodos , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Femenino , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
5.
Bioorg Med Chem Lett ; 28(1): 15-23, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29169673

RESUMEN

A novel, potent, and orally bioavailable inhibitor of the bromodomain of CBP, compound 35 (GNE-207), has been identified through SAR investigations focused on optimizing al bicyclic heteroarene to replace the aniline present in the published GNE-272 series. Compound 35 has excellent CBP potency (CBP IC50 = 1 nM, MYC EC50 = 18 nM), a selectively index of >2500-fold against BRD4(1), and exhibits a good pharmacokinetic profile.


Asunto(s)
Compuestos de Bifenilo/química , Diseño de Fármacos , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Animales , Sitios de Unión , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/metabolismo , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Semivida , Humanos , Enlace de Hidrógeno , Concentración 50 Inhibidora , Ratones , Microsomas Hepáticos/metabolismo , Simulación de Dinámica Molecular , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Ratas , Relación Estructura-Actividad , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/metabolismo
6.
Biopharm Drug Dispos ; 39(9): 420-430, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30335192

RESUMEN

GDC-0810 was under development as an oral anti-cancer drug for the treatment of estrogen receptor-positive breast cancer as a single agent or in combination. In vitro data indicated that GDC-0810 is a potent inhibitor of OATP1B1/1B3. To assess clinical risk, a PBPK model was developed to predict the transporter drug-drug interaction (tDDI) between GDC-0810 and pravastatin in human. The PBPK model was constructed in Simcyp® by integrating in vitro and in vivo data for GDC-0810. The prediction of human pharmacokinetics (PK) was verified using GDC-0810 phase I clinical PK data. The Simcyp transporter DDI model was verified using known OATP1B1/1B3 inhibitors (rifampicin, cyclosporine and gemfibrozil) and substrate (pravastatin), prior to using the model to predict GDC-0810 tDDI. The effect of GDC-0810 on pravastatin PK was then predicted based on the proposed clinical scenarios. Sensitivity analysis was conducted on the parameters with uncertainty. The developed PBPK model described the PK profile of GDC-0810 reasonably well. In the tDDI verification, the model reasonably predicted pravastatin tDDI caused by rifampicin and gemfibrozil OATP1B1/3 inhibition but under-predicted tDDI caused by cyclosporine. The effect of GDC-0810 on pravastatin PK was predicted to be low to moderate (pravastatin Cmax ratios 1.01-2.05 and AUC ratio 1.04-2.23). The observed tDDI (Cmax ratio 1.20 and AUC ratio 1.41) was within the range of the predicted values. This work demonstrates an approach using a PBPK model to prospectively assess tDDI caused by a new chemical entity as an OATP1B1/3 uptake transporter inhibitor to assess clinical risk and to support development strategy.


Asunto(s)
Cinamatos/farmacología , Indazoles/farmacología , Transportador 1 de Anión Orgánico Específico del Hígado/antagonistas & inhibidores , Modelos Biológicos , Pravastatina/farmacocinética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/antagonistas & inhibidores , Área Bajo la Curva , Ciclosporina/farmacología , Interacciones Farmacológicas , Gemfibrozilo/farmacología , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Rifampin/farmacología , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo
7.
Mol Pharm ; 14(5): 1754-1759, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28345929

RESUMEN

Species differences in the expression, activity, regulation, and substrate specificity of metabolizing enzymes preclude the use of animal models to predict clinical drug-drug interactions (DDIs). The objective of this work is to determine if the transgenic (Tg) Cyp3a-/-Tg-3A4Hep/Int and Nr1i2/Nr1i3-/--Cyp3a-/-Tg-PXR-CAR-3A4/3A7Hep/Int (PXR-CAR-CYP3A4/3A7) mouse models could be used to predict in vivo DDI of 10 drugs; alprazolam, bosutinib, crizotinib, dasatinib, gefitinib, ibrutinib, regorafenib, sorafenib, triazolam, and vandetinib (as victims); with varying magnitudes of reported CYP3A4 clinical DDI. As an assessment of the effect of CYP3A4 inhibition, these drugs were coadministered to Cyp3a-/-Tg-3A4Hep/Int mice with the CYP3A inhibitor, itraconazole. For crizotinib, regorafenib, sorafenib, and vandetanib, there was no significant increase of AUC observed; with alprazolam, bosutinib, ibrutinib, dasatinib, and triazolam, pretreatment with itraconazole resulted in a 2-, 4-, 17-, 7-, and 15-fold increase in AUC, respectively. With the exception of gefinitib for which the DDI effect was overpredicted (12-fold in Tg-mice vs 2-fold in the clinic), the magnitude of AUC increase observed in this study was consistent (within 2-fold) with the clinical DDI observed following administration with itraconazole/ketoconazole. As an assessment of CYP3A4 induction, following rifampin pretreatment to PXR-CAR-3A4/3A7Hep/Int mice, an 8% decrease in vandetanib mean AUC was observed; 39-52% reduction in AUC were observed for dasatinib, ibrutinib, regorafenib, and sorafenib compared to vehicle treated mice. The greatest effect of rifampin induction was observed with alprazolam, bosutinib, crizotinib, gefitinib, and triazolam where 72-91% decrease in AUC were observed. With the exception of vandetanib for which rifampin induction was under-predicted, the magnitude of induction observed in this study was consistent (within 2-fold) with clinical observations. These data sets suggest that, with two exceptions, these transgenic mice models were able to exclude or capture the magnitude of CYP3A4 clinical inhibition and induction. Data generated in transgenic mice may be used to gain confidence and complement in vitro and in silico methods for assessing DDI potential/liability.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Alprazolam/metabolismo , Compuestos de Anilina/metabolismo , Animales , Cromatografía Liquida , Receptor de Androstano Constitutivo , Crizotinib , Dasatinib/metabolismo , Femenino , Humanos , Itraconazol/metabolismo , Cetoconazol/metabolismo , Ratones , Ratones Transgénicos , Nitrilos/metabolismo , Piperidinas/metabolismo , Pirazoles/metabolismo , Piridinas/metabolismo , Quinazolinas/metabolismo , Quinolinas/metabolismo , Rifampin/metabolismo , Espectrometría de Masas en Tándem , Triazolam/metabolismo
8.
Xenobiotica ; 47(1): 50-65, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27055783

RESUMEN

1. The absorption, metabolism and excretion of cobimetinib, an allosteric inhibitor of MEK1/2, was characterized in mass balance studies following single oral administration of radiolabeled (14C) cobimetinib to Sprague-Dawley rats (30 mg/kg) and Beagle dogs (5 mg/kg). 2. The oral dose of cobimetinib was well absorbed (81% and 71% in rats and dogs, respectively). The maximal plasma concentrations for cobimetinib and total radioactivity were reached at 2-3 h post-dose. Drug-derived radioactivity was fully recovered (∼90% of the administered dose) with the majority eliminated in feces via biliary excretion (78% of the dose for rats and 65% for dogs). The recoveries were nearly complete after the first 48 h following dosing. 3. The metabolic profiles indicated extensive metabolism of cobimetinib prior to its elimination. For rats, the predominant metabolic pathway was hydroxylation at the aromatic core. Lower exposures for cobimetinib and total radioactivity were observed in male rats compared with female rats, which was consistent to in vitro higher clearance of cobimetinib for male rats. For dogs, sequential oxidative reactions occurred at the aliphatic portion of the molecule. Though rat metabolism was well-predicted in vitro with liver microsomes, dog metabolism was not. 4. Rats and dogs were exposed to the two major human circulating Phase II metabolites, which provided relevant metabolite safety assessment. In general, the extensive sequential oxidative metabolism in dogs, and not the aromatic hydroxylation in rats, was more indicative of the metabolism of cobimetinib in humans.


Asunto(s)
Azetidinas/metabolismo , Piperidinas/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Animales , Perros , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
9.
Drug Metab Dispos ; 44(1): 28-39, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26451002

RESUMEN

The pharmacokinetics, metabolism, and excretion of cobimetinib, a MEK inhibitor, were characterized in healthy male subjects (n = 6) following a single 20 mg (200 µCi) oral dose. Unchanged cobimetinib and M16 (glycine conjugate of hydrolyzed cobimetinib) were the major circulating species, accounting for 20.5% and 18.3% of the drug-related material in plasma up to 48 hours postdose, respectively. Other circulating metabolites were minor, accounting for less than 10% of drug-related material in plasma. The total recovery of the administered radioactivity was 94.3% (±1.6%, S.D.) with 76.5% (±2.3%) in feces and 17.8% (±2.5%) in urine. Metabolite profiling indicated that cobimetinib had been extensively metabolized with only 1.6% and 6.6% of the dose remaining as unchanged drug in urine and feces, respectively. In vitro phenotyping experiments indicated that CYP3A4 was predominantly responsible for metabolizing cobimetinib. From this study, we concluded that cobimetinib had been well absorbed (fraction absorbed, Fa = 0.88). Given this good absorption and the previously determined low hepatic clearance, the systemic exposures were lower than expected (bioavailability, F = 0.28). We hypothesized that intestinal metabolism had strongly attenuated the oral bioavailability of cobimetinib. Supporting this hypothesis, the fraction escaping gut wall elimination (Fg) was estimated to be 0.37 based on F and Fa from this study and the fraction escaping hepatic elimination (Fh) from the absolute bioavailability study (F = Fa × Fh × Fg). Physiologically based pharmacokinetics modeling also showed that intestinal clearance had to be included to adequately describe the oral profile. These collective data suggested that cobimetinib was well absorbed following oral administration and extensively metabolized with intestinal first-pass metabolism contributing to its disposition.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Azetidinas/administración & dosificación , Azetidinas/farmacocinética , Absorción Intestinal , Mucosa Intestinal/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Piperidinas/administración & dosificación , Piperidinas/farmacocinética , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Eliminación Renal , Administración Oral , Adulto , Antineoplásicos/sangre , Antineoplásicos/orina , Azetidinas/sangre , Azetidinas/orina , Disponibilidad Biológica , Biotransformación , Radioisótopos de Carbono , Citocromo P-450 CYP3A/metabolismo , Heces/química , Glicina/metabolismo , Voluntarios Sanos , Humanos , Hidrólisis , Intestinos/enzimología , Masculino , Microsomas Hepáticos/metabolismo , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Piperidinas/sangre , Piperidinas/orina , Inhibidores de Proteínas Quinasas/sangre , Inhibidores de Proteínas Quinasas/orina , Especificidad por Sustrato , Adulto Joven
10.
Toxicol Appl Pharmacol ; 300: 47-54, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27078884

RESUMEN

Bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) are epigenetic transcriptional regulators required for efficient expression of growth promoting, cell cycle progression and antiapoptotic genes. Through their bromodomain, these proteins bind to acetylated lysine residues of histones and are recruited to transcriptionally active chromatin. Inhibition of the BET-histone interaction provides a tractable therapeutic strategy to treat diseases that may have epigenetic dysregulation. JQ1 is a small molecule that blocks BET interaction with histones. It has been shown to decrease proliferation of patient-derived multiple myeloma in vitro and to decrease tumor burden in vivo in xenograft mouse models. While targeting BET appears to be a viable and efficacious approach, the nonclinical safety profile of BET inhibition remains to be well-defined. We report that mice dosed with JQ1 at efficacious exposures demonstrate dose-dependent decreases in their lymphoid and immune cell compartments. At higher doses, JQ1 was not tolerated and due to induction of significant body weight loss led to early euthanasia. Flow cytometry analysis of lymphoid tissues showed a decrease in both B- and T-lymphocytes with a concomitant decrease in peripheral white blood cells that was confirmed by hematology. Further investigation with the inactive enantiomer of JQ1 showed that these in vivo effects were on-target mediated and not elicited through secondary pharmacology due to chemical structure.


Asunto(s)
Azepinas/farmacología , Sistema Inmunológico/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Triazoles/farmacología , Animales , Azepinas/administración & dosificación , Relación Dosis-Respuesta a Droga , Epigenómica , Sistema Inmunológico/patología , Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Reticulocitos/efectos de los fármacos , Triazoles/administración & dosificación
11.
Drug Metab Dispos ; 43(12): 1929-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26438627

RESUMEN

Two isomeric metabolites of GDC-0623 [5-((2-fluoro-4-iodophenyl)amino)-N-(2-hydroxyethoxy)imidazo[1,5-a]pyridine-6-carboxamide], a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) kinase inhibitor, were identified in radiolabeled mass balance studies in rats and dogs (approximately 5% in excreta) and were also observed in human circulation (nonradiolabeled). Mass spectrometric data indicated that both metabolites had formed a new ring structure fused to the imidazopyridine core. Given their unusual structures, we conducted experiments to elucidate their chemical structures and understand the mechanisms for their formation. For the first metabolite, M14, a pyrazol-3-ol ring was generated by N-N bond formation between the aniline and hydroxamate. For the second metabolite, M13, an imidazol-2-one was generated by a Hofmann-type rearrangement that involved C-C bond cleavage and C-N bond formation. Both reactions were catalyzed by CYP2C9 and CYP2C19. M14 was generated directly from GDC-0623 and we speculate that its formation was via oxidative activation of the hydroxamic ester by cytochrome P450 (P450) and intramolecular nucleophilic displacement of the ester side chain. M13 (the rearranged metabolite) formed from the N-reduced hydroxamate (amide) and not from GDC-0623 directly. We propose for M13 that a P450-mediated reaction formed a cationic amide intermediate, which enabled the molecular rearrangement of the imidazopyridine core migrating from the amide carbon to the nitrogen and subsequent cyclization reaction. Each of these metabolic pathways constitutes a novel biotransformation mediated by P450 enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Animales , Perros , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas
12.
Drug Metab Dispos ; 43(6): 864-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25813936

RESUMEN

Data from the clinical absolute bioavailability (F) study with cobimetinib suggested that F was lower than predicted based on its low hepatic extraction and good absorption. The CYP3A4 transgenic (Tg) mouse model with differential expression of CYP3A4 in the liver (Cyp3a(-/-)Tg-3A4Hep) or intestine (Cyp3a(-/-)Tg-3A4Int) and both liver and intestine (Cyp3a(-/-)Tg-3A4Hep/Int) were used to study the contribution of intestinal metabolism to the F of cobimetinib. In addition, the effect of CYP3A4 inhibition and induction on cobimetinib exposures was tested in the Cyp3a(-/-)Tg-3A4Hep/Int and PXR-CAR-CYP3A4/CYP3A7 mouse models, respectively. After i.v. administration of 1 mg/kg cobimetinib to wild-type [(WT) FVB], Cyp3a(-/-)Tg-3A4Hep, Cyp3a(-/-)Tg-3A4Int, or Cyp3a(-/-)Tg-3A4Hep/Int mice, clearance (CL) (26-35 ml/min/kg) was similar in the CYP3A4 transgenic and WT mice. After oral administration of 5 mg/kg cobimetinib, the area under the curve (AUC) values of cobimetinib in WT, Cyp3a(-/-)Tg-3A4Hep, Cyp3a(-/-)Tg-3A4Int, or Cyp3a(-/-)Tg-3A4Hep/Int mice were 1.35, 3.39, 1.04, and 0.701 µM⋅h, respectively. The approximately 80% lower AUC of cobimetinib in transgenic mice when intestinal CYP3A4 was present suggested that the intestinal first pass contributed to the oral CL of cobimetinib. Oxidative metabolites observed in human circulation were also observed in the transgenic mice. In drug-drug interaction (DDI) studies using Cyp3a(-/-)Tg-3A4Hep/Int mice, 8- and 4-fold increases in oral and i.v. cobimetinib exposure, respectively, were observed with itraconazole co-administration. In PXR-CAR-CYP3A4/CYP3A7 mice, rifampin induction decreased cobimetinib oral exposure by approximately 80%. Collectively, these data support the conclusion that CYP3A4 intestinal metabolism contributes to the oral disposition of cobimetinib and suggest that under certain circumstances the transgenic model may be useful in predicting clinical DDIs.


Asunto(s)
Antineoplásicos/farmacocinética , Azetidinas/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Mucosa Intestinal/enzimología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Microsomas Hepáticos/enzimología , Piperidinas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacocinética , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/sangre , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Azetidinas/administración & dosificación , Azetidinas/sangre , Disponibilidad Biológica , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/genética , Inductores del Citocromo P-450 CYP3A/efectos adversos , Inhibidores del Citocromo P-450 CYP3A/efectos adversos , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Femenino , Semivida , Humanos , Inyecciones Intravenosas , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Tasa de Depuración Metabólica , Ratones Noqueados , Ratones Transgénicos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Piperidinas/administración & dosificación , Piperidinas/sangre , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/sangre , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
13.
Drug Metab Dispos ; 42(2): 207-12, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24212376

RESUMEN

Navitoclax (ABT-263), a Bcl-2 family inhibitor and ABT-199, a Bcl-2 selective inhibitor, are high molecular weight, high logP molecules that show low solubility in aqueous media. While these properties are associated with low oral bioavailability (F), both navitoclax and ABT-199 showed moderate F in preclinical species. The objective of the described study was to determine if lymphatic transport contributes to the systemic availability of navitoclax and ABT-199 in dogs. The intravenous pharmacokinetics of navitoclax and ABT-199 were determined in intact (noncannulated) dogs. In oral studies, tablets (100 mg) of navitoclax and ABT-199 were administered to both intact and thoracic lymph duct-cannulated (TDC) dogs. The clearance of navitoclax and ABT-199 was low; 0.673 and 0.779 ml/min per kilogram, respectively. The volume of distribution of both compounds was low (0.5-0.7 l/kg). The half-lives of navitoclax and ABT-199 were 22.2 and 12.9 hours, respectively. The F of navitoclax and ABT-199 were 56.5 and 38.8%, respectively, in fed intact dogs. In fed TDC dogs, 13.5 and 4.67% of the total navitoclax and ABT-199 doses were observed in lymph with the % F of navitoclax and ABT-199 of 21.7 and 20.2%, respectively. The lower lymphatic transport of ABT-199 corresponds to the lower overall % F of ABT-199 versus navitoclax despite similar systemic availability via the portal vein (similar % F in TDC animals). This is consistent with the higher long chain triglyceride solubility of navitoclax (9.2 mg/ml) versus ABT-199 (2.2 mg/ml). In fasted TDC animals, lymph transport of navitoclax and ABT-199 decreased by 1.8-fold and 10-fold, respectively.


Asunto(s)
Compuestos de Anilina/farmacocinética , Antineoplásicos/farmacocinética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Linfa/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Sulfonamidas/farmacocinética , Administración Oral , Compuestos de Anilina/administración & dosificación , Compuestos de Anilina/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Área Bajo la Curva , Disponibilidad Biológica , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Perros , Ayuno/metabolismo , Semivida , Inyecciones Intravenosas , Masculino , Tasa de Depuración Metabólica , Modelos Animales , Periodo Posprandial , Solubilidad , Sulfonamidas/administración & dosificación , Sulfonamidas/química , Conducto Torácico
14.
Mol Pharm ; 11(11): 4199-207, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25243894

RESUMEN

Cobimetinib is a MEK inhibitor currently in clinical trials as an anticancer agent. The objectives of this study were to determine in vitro and in vivo if cobimetinib is a substrate of P-glycoprotein (P-gp) and/or breast cancer resistance protein (Bcrp1) and to assess the implications of efflux on cobimetinib pharmacokinetics (PK), brain penetration, and target modulation. Cell lines transfected with P-gp or Bcrp1 established that cobimetinib was a substrate of P-gp but not a substrate of Bcrp1. In vivo, after intravenous and oral administration of cobimetinib to FVB (wild-type; WT), Mdr1a/b(-/-), Bcrp1 (-/-), and Mdr1a/b(-/-)/Bcrp(-/-) knockout (KO) mice, clearance was similar in WT (35.5 ± 16.7 mL/min/kg) and KO animals (22.0 ± 3.6 to 27.6 ± 5.2 mL/min/kg); oral exposure was also similar between WT and KO animals. After an oral 10 mg/kg dose of cobimetinib, the mean total brain to plasma ratio (Kp) at 6 h postdose was 0.3 and 0.2 in WT and Bcrp1(-/-) mice, respectively. In Mdr1a/b(-/-) and Mdr1a/1b/Bcrp1(-/-) KO mice and WT mice treated with elacridar (a P-gp and BCRP inhibitor), Kp increased to 11, 6, and 7, respectively. Increased brain exposure in Mdr1a/b(-/-) and Mdr1a/1b/Bcrp1(-/-) KO and elacridar treated mice was accompanied by up to ∼65% suppression of the target (pErk) in brain tissue, compared to WT mice. By MALDI imaging, the cobimetinib signal intensity was relatively high and was dispersed throughout the brain of Mdr1a/1b/Bcrp1(-/-) KO mice compared to low/undetectable signal intensity in WT mice. The efflux of cobimetinib by P-gp may have implications for the treatment of patients with brain tumors/metastases.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/fisiología , Transportadoras de Casetes de Unión a ATP/fisiología , Azetidinas/farmacocinética , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Piperidinas/farmacocinética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Azetidinas/farmacología , Transporte Biológico , Encéfalo/efectos de los fármacos , Cromatografía Liquida , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Femenino , Ratones , Ratones Noqueados , Piperidinas/farmacología , Espectrometría de Masas en Tándem , Distribución Tisular , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
15.
Mol Pharm ; 11(3): 1062-8, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24450768

RESUMEN

CYP Oxidoreductase (Por) is the essential electron donor for all CYP enzymes and is responsible for the activation of CYP. The Taconic Hepatic CYP Reductase Null (HRN) mouse model possesses a targeted mutation that results in liver-specific deletion of the Por gene thereby resulting in a disruption of CYP metabolism in the liver. The objectives of these studies were to further characterize the HRN mouse using probe drugs metabolized by CYP. In addition, tumor exposure in xenograft tumor bearing HRN immune-compromised (nude) mice was also determined. In HRN mice following intravenous (iv) administration of midazolam, clearance (CL) was reduced by ∼ 80% compared to wild-type mice (WT). After oral administration, the AUC of midazolam was increased by ∼ 20-fold in HRN mice compared to WT mice; this greater effect suggests that hepatic first pass plays a role in the oral CL of midazolam. A 50% and an 80% decrease in CL were also observed in HRN mice following iv administration of docetaxel and theophylline, respectively, compared to WT mice. In addition, a 2- to 3-fold increase in tumor concentrations of G4222, a tool compound, were observed in tumor bearing HRN nude mice compared to tumor bearing nude WT mice. The observations from these experiments demonstrate that, for compounds that are extensively metabolized by hepatic CYP, the HRN mouse model could potentially be valuable for evaluating in vivo efficacy of tool compounds in drug discovery where high hepatic CL and low exposure may prevent in vivo evaluation of a new chemical entity.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Descubrimiento de Drogas , Fibrosarcoma/metabolismo , Midazolam/farmacocinética , NADPH-Ferrihemoproteína Reductasa/fisiología , Animales , Antineoplásicos/farmacocinética , Docetaxel , Femenino , Fibrosarcoma/tratamiento farmacológico , Hipnóticos y Sedantes/farmacocinética , Hígado/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Taxoides/farmacocinética , Teofilina/farmacocinética , Vasodilatadores/farmacocinética
16.
Bioorg Med Chem Lett ; 24(19): 4714-4723, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25193232

RESUMEN

Use of the tools of SBDD including crystallography led to the discovery of novel and potent 6,5 heterobicyclic MEKi's [J. Med. Chem.2012, 55, 4594]. The core change from a 5,6 heterobicycle to a 6,5 heterobicycle was driven by the desire for increased structural diversity and aided by the co-crystal structure of G-925 [J. Med. Chem.2012, 55, 4594]. The key design feature was the shift of the attachment of the five-membered heterocyclic ring towards the B ring while maintaining the key hydroxamate and anilino pharamcophoric elements in a remarkably similar position as in G-925. From modelling, changing the connection point of the five membered ring heterocycle placed the H-bond accepting nitrogen within a good distance and angle to the Ser212 [J. Med. Chem.2012, 55, 4594]. The resulting novel 6,5 benzoisothiazole MEKi G-155 exhibited improved potency versus aza-benzofurans G-925 and G-963 but was a potent inhibitor of cytochrome P450's 2C9 and 2C19. Lowering the logD by switching to the more polar imidazo[1,5-a] pyridine core significantly diminished 2C9/2C19 inhibition while retaining potency. The imidazo[1,5-a] pyridine G-868 exhibited increased potency versus the starting point for this work (aza-benzofuran G-925) leading to deprioritization of the azabenzofurans. The 6,5-imidazo[1,5-a] pyridine scaffold was further diversified by incorporating a nitrogen at the 7 position to give the imidazo[1,5-a] pyrazine scaffold. The introduction of the C7 nitrogen was driven by the desire to improve metabolic stability by blocking metabolism at the C7 and C8 positions (particularly the HLM stability). It was found that improving on G-868 (later renamed GDC-0623) required combining C7 nitrogen with a diol hydroxamate to give G-479. G-479 with polarity distributed throughout the molecule was improved over G-868 in many aspects.


Asunto(s)
Descubrimiento de Drogas , Compuestos Heterocíclicos/farmacología , Imidazoles/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HCT116 , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Imidazoles/síntesis química , Imidazoles/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazinas/síntesis química , Pirazinas/química , Relación Estructura-Actividad
17.
Breast Cancer Res Treat ; 139(1): 61-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23605084

RESUMEN

Tamoxifen is a widely prescribed adjuvant anti-estrogen agent for estrogen receptor-positive breast cancer. Tamoxifen is known to undergo CYP2D6-mediated bioactivation to the active metabolite endoxifen. Endoxifen concentrations exhibit high interindividual variability, contributing to either sub-optimal tamoxifen efficacy or side effects in subsets of patients. However, the relationship between endoxifen exposure and tumor growth inhibition has not been well-characterized and little is known regarding the optimal in vivo endoxifen plasma level required for tumor inhibition. Pharmacokinetics-Pharmacodynamics (PK-PD) modeling was carried out to characterize the relationship between endoxifen concentration and tumor growth inhibition (TGI) in dose-ranging experiments in the human MCF7 xenograft bearing mouse model. Subsequently, simulations using human PK were used to determine the efficacious clinically relevant endoxifen concentration required to produce optimal tumor suppression. Based on the PK-PD model and simulations using clinical PK/concentration data of endoxifen, C stasis (100 % TGI) is observed at 53 nM, a concentration attained by many tamoxifen-treated patients. Importantly, PK-PD simulations indicate that mean steady-state levels observed in CYP2D6 extensive metabolizers are expected to result in optimal tumor suppression while mean concentrations observed in poor metabolizers are predicted to result in suboptimal TGI. Our study is the first to characterize the in vivo PK-PD relationship for endoxifen where clinically observed endoxifen concentrations are associated, in an exposure-dependent manner, with % TGI measured in a xenograft model. It is anticipated that endoxifen concentration achieved in individual patients is the limiting factor for achieving optimal tumor growth suppression.


Asunto(s)
Antineoplásicos/farmacocinética , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Tamoxifeno/análogos & derivados , Animales , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Tamoxifeno/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Toxicol Appl Pharmacol ; 266(1): 86-94, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23142475

RESUMEN

Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstrated by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd>3l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd=1.0l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Femenino , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Masculino , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-met/metabolismo , Distribución Aleatoria , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
19.
Mol Pharm ; 10(11): 4046-54, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24010577

RESUMEN

Cobimetinib is a potent and highly selective inhibitor of MEK1/2. Since cobimetinib exhibited absorption variability in cancer patients, a series of single-dose studies in healthy subjects were conducted to determine absolute bioavailability and elucidate potential effects of formulation, food, and elevated gastric pH on cobimetinib bioavailability. Three crossover trials were performed with a 20 mg cobimetinib oral dose: absolute bioavailability using a 2 mg intravenous infusion (n = 13), relative bioavailability of tablets versus capsules and food effect (n = 20), and drug interaction with a proton pump inhibitor (20 mg of rabeprazole daily for 5 days prior to cobimetinib administration; n = 20). Absolute bioavailability of cobimetinib was 46.2% (24.2, CV %), likely due to metabolism rather than incomplete absorption. The mean systemic clearance of cobimetinib was low (11.7 L/h [28.2, CV %]). Administration of cobimetinib tablets with a high-fat meal delayed drug absorption (prolonged tmax) but had no statistically significant effect on cobimetinib exposure (Cmax and AUC0-∞). Tablet and capsule formulations of cobimetinib showed comparable exposures. Cobimetinib exhibited delayed absorption (tmax) in the presence of rabeprazole, with no statistically significant effects on drug exposure (Cmax and AUC0-∞) in the fasted state. In conclusion, cobimetinib oral absorption was not affected by change in formulation, food, or elevated gastric pH.


Asunto(s)
Azetidinas/farmacocinética , Alimentos , Piperidinas/farmacocinética , Inhibidores de la Bomba de Protones/farmacología , Rabeprazol/farmacología , Absorción/efectos de los fármacos , Administración Oral , Adulto , Disponibilidad Biológica , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Persona de Mediana Edad , Estructura Molecular , Adulto Joven
20.
Drug Metab Dispos ; 40(5): 919-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22315332

RESUMEN

[3,4-Difluoro-2-(2-fluoro-4-iodo-phenylamino)-phenyl]-((S)-3-hydroxy-3-piperidin-2-yl-azetidin-1-yl)-methanone (GDC-0973) is a potent and highly selective inhibitor of mitogen-activated protein kinase(MAPK)/extracellular signal-regulated kinase (ERK) 1/2 (MEK1/2), a MAPK kinase that activates ERK1/2. The objectives of these studies were to characterize the disposition of GDC-0973 in preclinical species and to determine the relationship of GDC-0973 plasma concentrations to efficacy in Colo205 mouse xenograft models. The clearance (CL) of GDC-0973 was moderate in mouse (33.5 ml · min(-1) · kg(-1)), rat (37.9 ± 7.2 ml · min(-1) · kg(-1)), and monkey (29.6 ± 8.5 ml · min(-1) · kg(-1)). CL in dog was low (5.5 ± 0.3 ml · min(-1) · kg(-1)). The volume of distribution across species was large, 6-fold to 15-fold body water; half-lives ranged from 4 to 13 h. Protein binding in mouse, rat, dog, monkey, and human was high, with percentage unbound, 1 to 6%. GDC-0973-related radioactivity was rapidly and extensively distributed to tissues; however, low concentrations were observed in the brain. In rats and dogs, [(14)C]GDC-0973 was well absorbed (fraction absorbed, 70-80%). The majority of [(14)C]GDC-0973-related radioactivity was recovered in the bile of rat (74-81%) and dog (65%). The CL and volume of distribution of GDC-0973 in human, predicted by allometry, was 2.9 ml · min(-1) · kg(-1) and 9.9 l/kg, respectively. The predicted half-life was 39 h. To characterize the relationship between plasma concentration of GDC-0973 and tumor growth inhibition, pharmacokinetic-pharmacodynamic modeling was applied using an indirect response model. The KC(50) value for tumor growth inhibition in Colo205 xenografts was estimated to be 0.389 µM, and the predicted clinical efficacious dose was ∼10 mg. Taken together, these data are useful in assessing the disposition of GDC-0973, and where available, comparisons with human data were made.


Asunto(s)
Antineoplásicos , Azetidinas , Piperidinas , Inhibidores de Proteínas Quinasas , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Autorradiografía , Azetidinas/administración & dosificación , Azetidinas/farmacocinética , Azetidinas/uso terapéutico , Bilis/metabolismo , Encéfalo/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Perros , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inyecciones Intravenosas , Macaca fascicularis , Masculino , Ratones , Ratones Desnudos , Microsomas Hepáticos/metabolismo , Modelos Biológicos , Piperidinas/administración & dosificación , Piperidinas/farmacocinética , Piperidinas/uso terapéutico , Valor Predictivo de las Pruebas , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Estudios Retrospectivos , Especificidad de la Especie , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA