Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Pathog ; 191: 106665, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685359

RESUMEN

Fungal infections caused by Candida species pose a serious threat to humankind. Antibiotics abuse and the ability of Candida species to form biofilm have escalated the emergence of drug resistance in clinical settings and hence, rendered it more difficult to treat Candida-related diseases. Lethal effects of Candida infection are often due to inefficacy of antimicrobial treatments and failure of host immune response to clear infections. Previous studies have shown that a combination of riboflavin with UVA (riboflavin/UVA) light demonstrate candidacidal activity albeit its mechanism of actions remain elusive. Thus, this study sought to investigate antifungal and antibiofilm properties by combining riboflavin with UVA against Candida albicans and non-albicans Candida species. The MIC20 for the fluconazole and riboflavin/UVA against the Candida species tested was within the range of 0.125-2 µg/mL while the SMIC50 was 32 µg/mL. Present findings indicate that the inhibitory activities exerted by riboflavin/UVA towards planktonic cells are slightly less effective as compared to controls. However, the efficacy of the combination towards Candida species biofilms showed otherwise. Inhibitory effects exerted by riboflavin/UVA towards most of the tested Candida species biofilms points towards a variation in mode of action that could make it an ideal alternative therapeutic for biofilm-related infections.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Candida , Pruebas de Sensibilidad Microbiana , Riboflavina , Rayos Ultravioleta , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de la radiación , Riboflavina/farmacología , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Plancton/efectos de los fármacos , Fluconazol/farmacología , Humanos
2.
Molecules ; 26(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810292

RESUMEN

Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.


Asunto(s)
Antifúngicos , Materiales Biocompatibles , Biopelículas , Infección Hospitalaria/terapia , Farmacorresistencia Fúngica/efectos de los fármacos , Hongos , Nanopartículas/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Vendajes , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Hongos/efectos de los fármacos , Hongos/fisiología , Humanos
3.
Folia Microbiol (Praha) ; 65(3): 451-465, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32207097

RESUMEN

Garlic (Allium sativum L.) is a well-known spice widely utilised for its medicinal properties. There is an extensive record of the many beneficial health effects of garlic which can be traced back to as early as the ancient Egyptian era. One of the most studied properties of garlic is its ability to cure certain ailments caused by infections. In the 1940s, the antimicrobial activities exhibited by garlic were first reported to be due to allicin, a volatile compound extracted from raw garlic. Since then, allicin has been widely investigated for its putative inhibitory activities against a wide range of microorganisms. Allicin has demonstrated a preference for targeting the thiol-containing proteins and/or enzymes in microorganisms. It has also demonstrated the ability to regulate several genes essential for the virulence of microorganisms. Recently, it was reported that allicin may function better in combination with other antimicrobials compared to when used alone. When used in combination with antibiotics or antifungals, allicin enhanced the antimicrobial activities of these substances and improved the antimicrobial efficacy. Hence, it is likely that combination therapy of allicin with additional antimicrobial drug(s) could serve as a viable alternative for combating rising antimicrobial resistance. This review focuses on the antimicrobial activities exhibited by allicin alone as well as in combination with other substances. The mechanisms of action of allicin elucidated by some of the studies are also highlighted in the present review in order to provide a comprehensive overview of this versatile bioactive compound and the mechanistic evidence supporting its potential use in antimicrobial therapy.


Asunto(s)
Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Ajo/química , Ácidos Sulfínicos/farmacología , Ácidos Sulfínicos/uso terapéutico , Animales , Disulfuros , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA