Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pharmacol Rev ; 74(3): 712-768, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35738680

RESUMEN

The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.


Asunto(s)
Inhibidores de la Metaloproteinasa de la Matriz , Neoplasias , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/uso terapéutico , Neoplasias/metabolismo , Proteolisis
2.
J Neurosci ; 41(15): 3366-3385, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33712513

RESUMEN

Excessive inflammation within the CNS is injurious, but an immune response is also required for regeneration. Macrophages and microglia adopt different properties depending on their microenvironment, and exposure to IL4 and IL13 has been used to elicit repair. Unexpectedly, while LPS-exposed macrophages and microglia killed neural cells in culture, the addition of LPS to IL4/IL13-treated macrophages and microglia profoundly elevated IL10, repair metabolites, heparin binding epidermal growth factor trophic factor, antioxidants, and matrix-remodeling proteases. In C57BL/6 female mice, the generation of M(LPS/IL4/IL13) macrophages required TLR4 and MyD88 signaling, downstream activation of phosphatidylinositol-3 kinase/mTOR and MAP kinases, and convergence on phospho-CREB, STAT6, and NFE2. Following mouse spinal cord demyelination, local LPS/IL4/IL13 deposition markedly increased lesional phagocytic macrophages/microglia, lactate and heparin binding epidermal growth factor, matrix remodeling, oligodendrogenesis, and remyelination. Our data show that a prominent reparative state of macrophages/microglia is generated by the unexpected integration of pro- and anti-inflammatory activation cues. The results have translational potential, as the LPS/IL4/IL13 mixture could be locally applied to a focal CNS injury to enhance neural regeneration and recovery.SIGNIFICANCE STATEMENT The combination of LPS and regulatory IL4 and IL13 signaling in macrophages and microglia produces a previously unknown and particularly reparative phenotype devoid of pro-inflammatory neurotoxic features. The local administration of LPS/IL4/IL13 into spinal cord lesion elicits profound oligodendrogenesis and remyelination. The careful use of LPS and IL4/IL13 mixture could harness the known benefits of neuroinflammation to enable repair in neurologic insults.


Asunto(s)
Macrófagos/metabolismo , Microglía/metabolismo , Vaina de Mielina/metabolismo , Transducción de Señal , Regeneración de la Medula Espinal , Médula Espinal/metabolismo , Animales , Células Cultivadas , Técnicas de Cocultivo/métodos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Inflamación , Interleucina-13/farmacología , Interleucina-4/farmacología , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/metabolismo , Subunidad p45 del Factor de Transcripción NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Transcripción STAT6/metabolismo , Médula Espinal/patología , Médula Espinal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Receptor Toll-Like 4/metabolismo
3.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801441

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative autoimmune disease characterized by the aberrant infiltration of immune cells into the central nervous system (CNS) and by the loss of myelin. Sclerotic lesions and various inhibitory factors hamper the remyelination processes within the CNS. MS patients typically experience gradual cognitive and physical disabilities as the disease progresses. The etiology of MS is still unclear and emerging evidence suggests that microbiome composition could play a much more significant role in disease pathogenesis than was initially thought. Initially believed to be isolated to the gut microenvironment, we now know that the microbiome plays a much broader role in various tissues and is essential in the development of the immune system. Here, we present some of the unexpected roles that the microbiome plays in MS and discuss approaches for the development of next-generation treatment strategies.


Asunto(s)
Bacterias/inmunología , Sistema Nervioso Central/inmunología , Microbioma Gastrointestinal/inmunología , Esclerosis Múltiple/patología , Neuroinmunomodulación , Animales , Bacterias/clasificación , Humanos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/microbiología
4.
Cell Mol Life Sci ; 76(16): 3083-3095, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31165203

RESUMEN

Matrix metalloproteinases (MMPs) have been investigated in context of chronic inflammatory diseases and demonstrated to degrade multiple components of the extracellular matrix (ECM). However, following several disappointing MMP clinical trials, recent studies have demonstrated unexpected novel functions of MMPs in viral infections and autoimmune inflammatory diseases in unanticipated locations. Thus, MMPs play additional functions in inflammation than just ECM degradation. They can regulate the activity of chemokines and cytokines of the immune response by precise proteolytic processing resulting in activation or inactivation of signaling pathways. MMPs have been demonstrated to cleave multiple substrates of the central nervous systems (CNS) and contribute to promoting and dampening diseases of the CNS. Initially, believed to be solely promoting pathologies, more than 10 MMPs to date have been shown to have protective functions. Here, we present some of the beneficial and destructive roles of MMPs in CNS pathologies and discuss strategies for the use of MMP inhibitors.


Asunto(s)
Sistema Nervioso Central/metabolismo , Interferones/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Animales , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Inhibidores Tisulares de Metaloproteinasas/metabolismo
5.
Methods Mol Biol ; 2456: 85-94, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35612737

RESUMEN

The N-terminomics approach of Terminal Amine Isotopic Labeling of Substrates (TAILS) enables the identification and quantification of natural and neo-N-termini of proteins using liquid chromatography and tandem mass spectrometry (LC-MS/MS). This methodology has been used to study protease function and identify protease substrates in cell culture systems, animal disease models, and more recently, has been applied to clinical samples. Here, we present the application of TAILS to tissue and liquid biopsies.


Asunto(s)
Aminas , Proteómica , Aminas/química , Animales , Cromatografía Liquida , Marcaje Isotópico/métodos , Biopsia Líquida , Péptido Hidrolasas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
6.
Sci Rep ; 11(1): 7239, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790323

RESUMEN

Exercise affords broad benefits for people with multiple sclerosis (PwMS) including less fatigue, depression, and improved cognition. In animal models of multiple sclerosis (MS), exercise has been shown to improve remyelination, decrease blood-brain barrier permeability and reduce leukocyte infiltration. Despite these benefits many PwMS refrain from engaging in physical activity. This barrier to participation in exercise may be overcome by uncovering and describing the mechanisms by which exercise promotes beneficial changes in the central nervous system (CNS). Here, we show that acute bouts of exercise in mice profoundly alters the proteome in demyelinating lesions. Following lysolecithin induced demyelination of the ventral spinal cord, mice were given immediate access to a running wheel for 4 days. Lesioned spinal cords and peripheral blood serum were then subjected to tandem mass tag labeling shotgun proteomics workflow to identify alteration in protein levels. We identified 86 significantly upregulated and 85 downregulated proteins in the lesioned spinal cord as well as 14 significantly upregulated and 11 downregulated proteins in the serum following acute exercise. Altered pathways following exercise in demyelinated mice include oxidative stress response, metabolism and transmission across chemical synapses. Similar acute bout of exercise in naïve mice also changed several proteins in the serum and spinal cord, including those for metabolism and anti-oxidant responses. Improving our understanding of the mechanisms and duration of activity required to influence the injured CNS should motivate PwMS and other conditions to embrace exercise as part of their therapy to manage CNS disability.


Asunto(s)
Enfermedades Desmielinizantes , Regulación de la Expresión Génica , Condicionamiento Físico Animal , Proteoma/biosíntesis , Animales , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/terapia , Femenino , Ratones
7.
ACS Chem Biol ; 14(11): 2471-2483, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31393699

RESUMEN

Dysregulated protease activity is often implicated in the initiation of inflammation and immune cell recruitment in gastrointestinal inflammatory diseases. Using N-terminomics/TAILS (terminal amine isotopic labeling of substrates), we compared proteases, along with their substrates and inhibitors, between colonic mucosal biopsies of healthy patients and those with ulcerative colitis (UC). Among the 1642 N-termini enriched using TAILS, increased endogenous processing of proteins was identified in UC compared to healthy patients. Changes in the reactome pathways for proteins associated with metabolism, adherens junction proteins (E-cadherin, liver-intestinal cadherin, catenin alpha-1, and catenin delta-1), and neutrophil degranulation were identified between the two groups. Increased neutrophil infiltration and distinct proteases observed in ulcerative colitis may result in extensive break down, altered processing, or increased remodeling of adherens junctions and other cellular functions. Analysis of the preferred proteolytic cleavage sites indicated that the majority of proteolytic activity and processing comes from host proteases, but that key microbial proteases may also play a role in maintaining homeostasis. Thus, the identification of distinct proteases and processing of their substrates improves the understanding of dysregulated proteolysis in normal intestinal physiology and ulcerative colitis.


Asunto(s)
Colitis Ulcerosa/fisiopatología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/metabolismo , Proteolisis , Proteómica/métodos , Adulto , Anciano , Secuencia de Aminoácidos , Sitios de Unión , Biopsia , Cadherinas/metabolismo , Cateninas/metabolismo , Cromatografía Líquida de Alta Presión , Colon/patología , Femenino , Humanos , Marcaje Isotópico/métodos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Péptidos/análisis , Unión Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA