Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nano Lett ; 22(6): 2270-2276, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35225620

RESUMEN

Understanding the Coulomb interactions between two-dimensional (2D) materials and adjacent ions/impurities is essential to realizing 2D material-based hybrid devices. Electrostatic gating via ionic liquids (ILs) has been employed to study the properties of 2D materials. However, the intrinsic interactions between 2D materials and ILs are rarely addressed. This work studies the intersystem Coulomb interactions in IL-functionalized InSe field-effect transistors by displacement current measurements. We uncover a strong self-gating effect that yields a 50-fold enhancement in interfacial capacitance, reaching 550 nF/cm2 in the maximum. Moreover, we reveal the IL-phase-dependent transport characteristics, including the channel current, carrier mobility, and density, substantiating the self-gating at the InSe/IL interface. The dominance of self-gating in the rubber phase is attributed to the correlation between the intra- and intersystem Coulomb interactions, further confirmed by Raman spectroscopy. This study provides insights into the capacitive coupling at the InSe/IL interface, paving the way to developing liquid/2D material hybrid devices.

2.
Nanotechnology ; 32(15): 155704, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33373982

RESUMEN

The magnetotransport properties of a hybrid InSe/monolayer graphene in a SiC system are systematically studied. Compared to those of its bare graphene counterpart, in InSe/graphene, we can effectively modify the carrier density, mobility, effective mass, and electron-electron (e-e) interactions enhanced by weak disorder. We show that in bare graphene and hybrid InSe/graphene systems, the logarithmic temperature (lnT) dependence of the Hall slope R H = Î´R xy /δB = Î´ρ xy /δB can be used to probe e-e interaction effects at various temperatures even when the measured resistivity does not show a lnT dependence due to strong electron-phonon scattering. Nevertheless, one needs to be certain that the change of R H is not caused by an increase of the carrier density by checking the magnetic field position of the longitudinal resistivity minimum at different temperatures. Given the current challenges in gating graphene on SiC with a suitable dielectric layer, our results suggest that capping a van der Waals material on graphene is an effective way to modify the electronic properties of monolayer graphene on SiC.

3.
Opt Express ; 28(1): 685-694, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-32118991

RESUMEN

A novel approach for the production of both amorphous and crystalline selenium nanoparticles (SeNPs) using femtosecond laser-induced plasma shock wave on the surface of Bi2Se3 topological insulators at room temperature and ambient pressure is demonstrated. The shape and size of SeNPs can be reliably controlled via the kinetic energy obtained from laser pulses, so these are applicable as active components in nanoscale applications. Importantly, the rapid, low-cost and eco-friendly synthesis strategy developed in this study could also be extendable to other systems.

4.
Inorg Chem ; 58(17): 11730-11737, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31415155

RESUMEN

We report crystal growth, AC and DC magnetic susceptibilities [χ(T, H)], magnetization [M(T, H)], and heat capacity [CP(T, H)] measurement results of GdSbTe single crystal. GdSbTe is isostructural to the confirmed nonmagnetic nodal-line semimetal ZrSiS of noncentrosymmetric tetragonal crystal structure in space group P4/nmm (No. 129), but it shows additional long-range antiferromagnetic spin ordering for the Gd spins of S = 7/2 below TN. Both χ(T, H) and CP(T, H) measurements confirm the existence of a long-range antiferromagnetic (AFM) spin ordering of Gd spins below TN ∼ 12 K, and an additional spin reorientation/recovery (sr) behavior is identified from the change of on-site spin anisotropy between Tsr1 ∼ 7 and Tsr2 ∼ 4 K. The anisotropic magnetic susceptibilities of χ(T, H) below TN clearly demonstrate that the AFM long-range spin ordering of GdSbTe has an easy axis parallel to the ab-plane direction. The field- and orientation-dependent magnetization of M(T, H) at 2 K shows two plateaus to indicate the spin-flop transition for H||ab near ∼2.1 T and a metamagnetic state near ∼5.9 T having ∼1/3 of the fully polarized magnetization by the applied field. The heat capacity measurement results yield Sommerfeld coefficient of γ ∼ 7.6(4) mJ/mol K2 and θD ∼ 195(2) K being less than half of that for the nonmagnetic ZrSiS. A three-dimensional (3D) AFM spin structure is supported by the ab initio calculations for Gd having magnetic moment of 7.1 µB and the calculated AFM band structure indicates that GdSbTe is a semimetal with bare density of states (0.36 states/eV fu) at the Fermi level, which is 10 times smaller than the measured one to suggest strong spin-fluctuation.

5.
Nano Lett ; 18(7): 4403-4408, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29860844

RESUMEN

Manipulating the electron spin with the aid of spin-orbit coupling (SOC) is an indispensable element of spintronics. Electrostatically gating a material with strong SOC results in an effective magnetic field which can in turn be used to govern the electron spin. In this work, we report the existence and electrostatic tunability of Rashba SOC in multilayer InSe. We observed a gate-voltage-tuned crossover from weak localization (WL) to weak antilocalization (WAL) effect in quantum transport studies of InSe, which suggests an increasing SOC strength. Quantitative analyses of magneto-transport studies and energy band diagram calculations provide strong evidence for the predominance of Rashba SOC in electrostatically gated InSe. Furthermore, we attribute the tendency of the SOC strength to saturate at high gate voltages to the increased electronic density of states-induced saturation of the electric field experienced by the electrons in the InSe layer. This explanation of nonlinear gate voltage control of Rashba SOC can be generalized to other electrostatically gated semiconductor nanomaterials in which a similar tendency of spin-orbit length saturation was observed (e.g., nanowire field effect transistors), and is thus of broad implications in spintronics. Identifying and controlling the Rashba SOC in InSe may serve pivotally in devising III-VI semiconductor-based spintronic devices in the future.

6.
Nano Lett ; 18(5): 3221-3228, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29694049

RESUMEN

Organic-inorganic hybrid two-dimensional (2D) perovskites have recently attracted great attention in optical and optoelectronic applications due to their inherent natural quantum-well structure. We report the growth of high-quality millimeter-sized single crystals belonging to homologous two-dimensional (2D) hybrid organic-inorganic Ruddelsden-Popper perovskites (RPPs) of (BA)2(MA) n-1Pb nI3 n+1 ( n = 1, 2, and 3) by a slow evaporation at a constant-temperature (SECT) solution-growth strategy. The as-grown 2D hybrid perovskite single crystals exhibit excellent crystallinity, phase purity, and spectral uniformity. Low-threshold lasing behaviors with different emission wavelengths at room temperature have been observed from the homologous 2D hybrid RPP single crystals. Our result demonstrates that solution-growth homologous organic-inorganic hybrid 2D perovskite single crystals open up a new window as a promising candidate for optical gain media.

7.
Phys Rev Lett ; 119(13): 136805, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-29341707

RESUMEN

Plasmons, the collective excitations of electrons in the bulk or at the surface, play an important role in the properties of materials, and have generated the field of "plasmonics." We report the observation of a highly unusual acoustic plasmon mode on the surface of a three-dimensional topological insulator (TI) Bi_{2}Se_{3}, using momentum resolved inelastic electron scattering. In sharp contrast to ordinary plasmon modes, this mode exhibits almost linear dispersion into the second Brillouin zone and remains prominent with remarkably weak damping not seen in any other systems. This behavior must be associated with the inherent robustness of the electrons in the TI surface state, so that not only the surface Dirac states but also their collective excitations are topologically protected. On the other hand, this mode has much smaller energy dispersion than expected from a continuous media excitation picture, which can be attributed to the strong coupling with surface phonons.

8.
Nano Lett ; 15(10): 6896-900, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26393876

RESUMEN

Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)/Bi2Se3 and Fe/PTCDA/Bi2Se3 heterointerfaces are investigated using scanning tunneling microscopy and spectroscopy. The close-packed self-assembled PTCDA monolayer possesses big molecular band gap and weak molecule-substrate interactions, which leaves the Bi2Se3 topological surface state intact under PTCDA. Formation of Fe-PTCDA hybrids removes interactions between the Fe dopant and the Bi2Se3 surface, such as doping effects and Coulomb scattering. Our findings reveal the functionality of PTCDA to prevent dopant disturbances in the TSS and provide an effective alternative for interface designs of realistic TI devices.

9.
Nano Lett ; 15(6): 3815-9, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25924062

RESUMEN

Graphene-like two-dimensional (2D) materials not only are interesting for their exotic electronic structure and fundamental electronic transport or optical properties but also hold promises for device miniaturization down to atomic thickness. As one material belonging to this category, InSe, a III-VI semiconductor, not only is a promising candidate for optoelectronic devices but also has potential for ultrathin field effect transistor (FET) with high mobility transport. In this work, various substrates such as PMMA, bare silicon oxide, passivated silicon oxide, and silicon nitride were used to fabricate multilayer InSe FET devices. Through back gating and Hall measurement in four-probe configuration, the device's field effect mobility and intrinsic Hall mobility were extracted at various temperatures to study the material's intrinsic transport behavior and the effect of dielectric substrate. The sample's field effect and Hall mobilities over the range of 20-300 K fall in the range of 0.1-2.0 × 10(3) cm(2)/(V s), which are comparable or better than the state of the art FETs made of widely studied 2D transition metal dichalcogenides.

10.
Inorg Chem ; 54(9): 4303-9, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25864534

RESUMEN

By both experimental measurements and theoretical calculations, we investigated the magnetic and electronic properties of Li2Cu(WO4)2 as a tungstate-bridged quasi-one-dimensional (1D) copper spin-(1/2) chain system. Interestingly, magnetic susceptibility χ(T) and specific heat measurements show that the system undergoes a three-dimensional antiferromagnetic (AF)-like ordering at TN ≈ 3.7 K, below a broad χ(T) maximum at ∼8.9 K indicating a low-dimensional short-range AF spin correlation. Bonner-Fisher model fitting of χ(T) leads to an AF intrachain exchange constant of J/kB = 15.8 ± 0.1 K, and mean-field theory estimation gives an interchain coupling constant of J⊥/kB = 1.6 K, which supports the quasi-1D nature of this spin system. Theoretical evaluation of exchange coupling constants within the generalized gradient approximation (GGA) plus on-site Coulomb interaction (U) shows that the dominant AF exchange interaction is of ∼13.9 K along the a-axis with weak interchain coupling, in agreement with the experimental result of a quasi-1D spin-(1/2) chain system. The GGA+U calculations also predict that Li2Cu(WO4)2 is a charge transfer-type AF semiconductor with a direct band gap of 1.5 eV.

11.
Nano Lett ; 14(5): 2800-6, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24742243

RESUMEN

Two-dimensional crystals with a wealth of exotic dimensional-dependent properties are promising candidates for next-generation ultrathin and flexible optoelectronic devices. For the first time, we demonstrate that few-layered InSe photodetectors, fabricated on both a rigid SiO2/Si substrate and a flexible polyethylene terephthalate (PET) film, are capable of conducting broadband photodetection from the visible to near-infrared region (450-785 nm) with high photoresponsivities of up to 12.3 AW(-1) at 450 nm (on SiO2/Si) and 3.9 AW(-1) at 633 nm (on PET). These photoresponsivities are superior to those of other recently reported two-dimensional (2D) crystal-based (graphene, MoS2, GaS, and GaSe) photodetectors. The InSe devices fabricated on rigid SiO2/Si substrates possess a response time of ∼50 ms and exhibit long-term stability in photoswitching. These InSe devices can also operate on a flexible substrate with or without bending and reveal comparable performance to those devices on SiO2/Si. With these excellent optoelectronic merits, we envision that the nanoscale InSe layers will not only find applications in flexible optoelectronics but also act as an active component to configure versatile 2D heterostructure devices.

12.
ACS Appl Mater Interfaces ; 13(3): 4618-4625, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33445863

RESUMEN

As the continuous miniaturization of floating-gate transistors approaches a physical limit, new innovations in device architectures, working principles, and device materials are in high demand. This study demonstrated a nonvolatile memory structure with multilevel data storage that features a van der Waals gate architecture made up of a partially oxidized surface layer/indium selenide (InSe) van der Waals interface. The key functionality of this proof-of-concept device is provided through the generation of charge-trapping sites via an indirect oxygen plasma treatment on the InSe surface layer. In contrast to floating-gate nonvolatile memory, these sites have the ability to retain charge without the help of a gate dielectric. Together with the layered structure, the surface layer with charge-trapping sites facilitates continual electrostatic doping in the underlying InSe layers. The van der Waals gating effect is further supported by trapped charge-induced core-level energy shifts and relative work function variations obtained from operando scanning X-ray photoelectron spectroscopy and Kelvin probe microscopy, respectively. On modulating the amount of electric field-induced trapped electrons by the electrostatic gate potential, eight distinct storage states remained over 3000 s. Moreover, the device exhibits a high current switching ratio of 106 within 11 cycles. The demonstrated characteristics suggest that the engineering of an InSe interface has potential applications for nonvolatile memory.

13.
ACS Appl Mater Interfaces ; 12(16): 18667-18673, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32233397

RESUMEN

To explore the potential of field-effect transistors (FETs) based on monolayers (MLs) of the two-dimensional semiconducting channel (SC) for spintronics, the two most important issues are to ensure the formation of variable low-resistive tunnel ferromagnetic contacts (FCs) and to preserve intrinsic properties of the SC during fabrication. Large Schottky barriers lead to the formation of high resistive contacts, and methods adopted to control the barriers often alter the intrinsic properties of the SC. This work aims at addressing both issues in fully encapsulated ML WSe2 FETs using bilayer hexagonal boron nitride (h-BN) as a tunnel barrier at the FC/SC interface. We investigate the electrical transport in ML WSe2 FETs with the current-in-plane geometry that yields hole mobilities of ∼38.3 cm2 V-1 s-1 at 240 K and on/off ratios of the order of 107, limited by the contact regions. We have achieved an ultralow effective Schottky barrier (∼5.34 meV) with an encapsulated tunneling device as opposed to a nonencapsulated device in which the barrier heights are considerably higher. These observations provide an insight into the electrical behavior of the FC/h-BN/SC/h-BN heterostructures, and such control over the barrier heights opens up the possibilities for WSe2-based spintronic devices.

14.
ACS Appl Mater Interfaces ; 12(23): 26213-26221, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32400164

RESUMEN

Tuning the optical and electrical properties by stacking different layers of two-dimensional (2D) materials enables us to create unusual physical phenomena. Here, we demonstrate an alternative approach to enhance charge separation and alter physical properties in van der Waals heterojunctions with type-II band alignment by using thin dielectric spacers. To illustrate our working principle, we implement a hexagonal boron nitride (h-BN) sieve layer in between an InSe/GeS heterojunction. The optical transitions at the junctions studied by photoluminescence and the ultrafast pump-probe technique show quenching of emission without h-BN layers exhibiting an indirect recombination process. This quenching effect due to strong interlayer coupling was confirmed with Raman spectroscopic studies. In contrast, h-BN layers in between InSe and GeS show strong enhancement in emission, giving another degree of freedom to tune the heterojunction property. The two-terminal photoresponse study supports the argument by showing a large photocurrent density for an InSe/h-BN/GeS device by avoiding interlayer charge recombination. The enhanced charge separation with h-BN mediation manifests a photoresponsivity and detectivity of 9 × 102 A W-1 and 3.4 × 1014 Jones, respectively. Moreover, a photogain of 1.7 × 103 shows a high detection of electrons for the incident photons. Interestingly, the photovoltaic short-circuit current is switched from positive to negative, whereas the open-circuit voltage changes from negative to positive. Our proposed enhancement of charge separation with 2D-insulator mediation, therefore, provides a useful route to manipulate the physical properties of heterostructures and for the future development of high-performance optoelectronic devices.

15.
Nanoscale ; 12(35): 18269-18277, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32857093

RESUMEN

Three-dimensional organic-inorganic hybrid halide perovskites have been demonstrated as great materials for applications in optoelectronics and photonics. However, their inherent instabilities in the presence of moisture, light, and heat may hinder their commercialization. Alternatively, emerging two-dimensional (2D) organic-inorganic hybrid perovskites have recently attracted increasing attention owing to their great environmental stability and inherent natural quantum-well structure. In this work, we have synthesized a high-quality long-chain organic diammonium spacer assisted 2D hybrid perovskite FA-(N-MPDA)PbBr4 (FA = formamidinium and N-MPDA = N-methylpropane-1,3-diammonium) by the slow evaporation at constant temperature method. The millimeter-sized single-crystalline microrods demonstrate low threshold random lasing behavior at room temperature. The single-crystalline 2D hybrid perovskite random laser achieved a very narrow linewidth (∼0.1 nm) with a low threshold (∼0.5 µJ cm-2) and a high quality factor (∼5350). Furthermore, the 2D hybrid microrod laser shows stable lasing emission with no measurable degradation after at least 2 h under continuous illumination, which substantially proves the stability of 2D perovskites. Our results demonstrate the promise of 2D organic-inorganic microrod-shaped perovskites and provide an important step toward the realization of high-performance optoelectronic devices.

16.
Sci Rep ; 10(1): 9803, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555237

RESUMEN

Mid-infrared (MIR) light sources have much potential in the study of Dirac-fermions (DFs) in graphene and topological insulators (TIs) because they have a low photon energy. However, the topological surface state transitions (SSTs) in Dirac cones are veiled by the free carrier absorption (FCA) with same spectral line shape that is always seen in static MIR spectra. Therefore, it is difficult to distinguish the SST from the FCA, especially in TIs. Here, we disclose the abnormal MIR spectrum feature of transient reflectivity changes (ΔR/R) for the non-equilibrium states in TIs, and further distinguish FCA and spin-momentum locked SST using time-resolved and linearly polarized ultra-broadband MIR spectroscopy with no environmental perturbation. Although both effects produce similar features in the reflection spectra, they produce completely different variations in the ΔR/R to show their intrinsic ultrafast dynamics.

17.
ACS Appl Mater Interfaces ; 11(27): 24269-24278, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31250634

RESUMEN

Two-dimensional ternary materials are attracting widespread interest because of the additional degree of freedom available to tailor the material property for a specific application. An In1-xSnxSe phototransistor possessing tunable ultrahigh mobility by Sn-doping engineering is demonstrated in this study. A striking feature of In1-xSnxSe flakes is the reduction in the oxide phase compared to undoped InSe, which is validated by spectroscopic analyses. Moreover, first-principles density functional calculations performed for the In1-xSnxSe crystal system reveal the same effective mass when doped with Sn atoms. Hence, because of an increased lifetime owing to the enhanced crystal quality, the carriers in In1-xSnxSe have higher mobility than in InSe. The internally boosted electrical properties of In1-xSnxSe exhibit ultrahigh mobility of 2560 ± 240 cm2 V-1 s-1 by suppressing the interfacial traps with substrate modification and channel encapsulation. As a phototransistor, the ultrathin In1-xSnxSe flakes are highly sensitive with a detectivity of 1014 Jones. It possesses a large photoresponsivity and photogain (Vg = 40 V) as high as 3 × 105 A W-1 and 0.5 × 106, respectively. The obtained results outperform all previously reported performances of InSe-based devices. Thus, the doping-engineered In1-xSnxSe-layered semiconductor finds a potential application in optoelectronics and meets the demand for faster electronic technology.

18.
Dalton Trans ; 47(46): 16509-16515, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30411746

RESUMEN

Based on the atomic electronic configuration and Ti-Se coordination, a valence bond model for the layered transition metal dichalcogenide (TMDC) 1T-TiSe2 is proposed. 1T-TiSe2 is viewed as being composed of edge-sharing TiSe4-plaquettes as TiSe2-ribbon chains in each layer via a directional valence shell electron distribution as chemical bonds, in contrast to the conventional layer view of face-sharing TiSe6-octahedra. The four valence electrons per Ti in the hybridized dsp2-orbitals of square coordination form σ-bonds with the four nearest neighbor Se atoms in the chain. The electrons in the lone pair of the Se-4pz orbital are proposed to form a dp type π-bond via side-to-side orbital overlap with the empty Ti-3dxz/3dyz orbitals within each chain, which is positively supported by quantum chemistry calculations. A study of electron energy loss spectroscopy (EELS) with transmission electron microscopy (TEM) for 1T-TiSe2 is presented to show an energy loss near ∼7 and ∼20 eV, which confirms the existence of collective plasmon oscillations with the predicted effective electron numbers for the π- and (π + σ)-bond electrons, respectively.

19.
ACS Appl Mater Interfaces ; 10(39): 33450-33456, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30191709

RESUMEN

The electrical contact to two-dimensional (2D) semiconductor materials is decisive to the electronic performance of 2D semiconductor field-effect devices (FEDs). The presence of a Schottky barrier often leads to a large contact resistance, which seriously limits the channel conductance and carrier mobility measured in a two-terminal geometry. In contrast, Ohmic contact is desirable and can be achieved by the presence of a nonrectifying or tunneling barrier. Here, we demonstrate that a nonrectifying barrier can be realized by contacting indium (In), a low work function metal, with layered InSe because of a favorable band alignment at the In-InSe interface. The nonrectifying barrier is manifested by Ohmic contact behavior at T = 2 K and a low barrier height, ΦB = 50 meV. This Ohmic contact enables demonstration of an on-current as large as 410 µA/µm, which is among the highest values achieved in FEDs based on layered semiconductors. A high electron mobility of 3700 and 1000 cm2/V·s is achieved with the two-terminal In-InSe FEDs at T = 2 K and room temperature, respectively, which can be attributed to enhanced quality of both conduction channel and the contacts. The improvement in the contact quality is further proven by an X-ray photoelectron spectroscopy study, which suggests that a reduction effect occurs at the In-InSe interface. The demonstration of high-performance In-InSe FEDs indicates a viable interface engineering method for next-generation, 2D semiconductor-based electronics.

20.
Nanoscale ; 10(39): 18642-18650, 2018 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-30260359

RESUMEN

Flexible optoelectronic devices facilitated by the piezotronic effect have important applications in the near future in many different fields ranging from solid-state lighting to biomedicine. Two-dimensional materials possessing extraordinary mechanical strength and semiconducting properties are essential for realizing nanopiezotronics and piezo-phototronics. Here, we report the first demonstration of piezo-phototronic properties in In1-xSnxSe flexible devices by applying systematic mechanical strain under photoexcitation. Interestingly, we discover that the dark current and photocurrent are increased by five times under a bending strain of 2.7% with a maximum photoresponsivity of 1037 AW-1. In addition, the device can act as a strain sensor with a strain sensitivity up to 206. Based on these values, the device outperforms the same class of devices in two-dimensional materials. The underlying mechanism responsible for the discovered behavior can be interpreted in terms of piezoelectric potential gating, allowing the device to perform like a phototransistor. The strain-induced gate voltage assists in the efficient separation of photogenerated charge carriers and enhances the mobility of In1-xSnxSe, resulting in good performance on a freeform surface. Thus, our multifunctional device is useful for the development of a variety of advanced applications and will help meet the demand of emerging technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA