Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(5): 3125-3135, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38288596

RESUMEN

The chapter on the thiol-related hydrogen bond (H-bond) and its excited-state intramolecular proton-transfer (ESIPT) reaction was recently opened where compound 4'-diethylamino-3-mercaptoflavone (3NTF) undergoes ESIPT in both cyclohexane solution and solid, giving a 710 nm tautomer emission with an anomalously large Stokes shift of 12,230 cm-1. Considering the thiol H-bond to be unconventional compared to the conventional Pauling-type -OH or -NH H-bond, it is thus essential and timely to probe its fundamental difference between their ESIPT. However, thiol-associated ESIPT tends to be nonemissive due to the dominant nπ* character of the tautomeric lowest excited state. Herein, based on the 3-mercaptoflavone scaffold and π-elongation concept, a new series of 4'-substituted-7-diethylamino-3-mercaptoflavones, NTFs, was designed and synthesized with varied H-bond strength and 690-720 nm tautomeric emission upon ultraviolet (UV) excitation in cyclohexane. The order of their H-bonding strength was experimentally determined to be N-NTF < O-NTF < H-NTF < F-NTF, while the rate of -SH ESIPT measured by fluorescence upconversion was F-NTF (398 fs)-1 < H-NTF (232 fs)-1 < O-NTF (123 fs)-1 < N-NTF (101 fs)-1 in toluene. Unexpectedly, the strongest H-bonded F-NTF gives the slowest ESIPT, which does not conform to the traditional ESIPT model. The results are rationalized by the trend of carbonyl oxygen basicity rather than -SH acidity. Namely, the thiol acidity relevant to the H-bond strength plays a minor role in the driving force of ESIPT. Instead, the proton-accepting strength governs ESIPT. That is to say, the noncanonical thiol H-bonding system undergoes an unconventional type of ESIPT.

2.
Acc Chem Res ; 56(6): 689-699, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36882976

RESUMEN

ConspectusDesigning bright and efficient near-infrared (NIR) emitters has drawn much attention due to numerous applications ranging from biological imaging, medical therapy, optical communication, and night-vision devices. However, polyatomic organic and organometallic molecules with energy gaps close to the deep red and NIR regime are subject to dominant nonradiative internal conversion (IC) processes, which drastically reduces the emission intensity and exciton diffusion length of organic materials and hence hampers the optoelectronic performances. To suppress nonradiative IC rates, we suggested two complementary approaches to solve the issues: exciton delocalization and molecular deuteration. First, exciton delocalization efficiently suppresses the molecular reorganization energy through partitioning to all aggregated molecules. According to the IC theory together with the effect of exciton delocalization, the simulated nonradiative rates with the energy gap ΔE = 104 cm-1 decrease by around 104 fold when the exciton delocalization length equals 5 (promoting vibronic frequency ωl = 1500 cm-1). Second, molecular deuterations reduce Franck-Condon vibrational overlaps and vibrational frequencies of promoting modes, which decreases IC rates by 1 order of magnitude in comparison to the rates of nondeuterated molecules under ΔE of 104 cm-1. Although deuteration of molecules has long been attempted to increase emission intensity, the results have been mixed. Here, we provide a robust derivation of the IC theory to demonstrate its validity, especially to emission in the NIR region.The concepts are experimentally verified by the strategic design and synthesis of a class of square-planar Pt(II) complexes, which form crystalline aggregates in vapor deposited thin films. The packing geometries are well characterized by the grazing angle X-ray diffraction (GIXD), showing domino-like packing arrangements with the short ππ separation of 3.4-3.7 Å. Upon photoexcitation, such closely packed assemblies exhibit intense NIR emission maximized in the 740-970 nm region through metal-metal-to-ligand charge transfer (MMLCT) transition with unprecedented photoluminescent quantum yield (PLQY) of 8-82%. To validate the existence of exciton delocalization, we applied time-resolved step-scan Fourier transform UV-vis spectroscopy to probe the exciton delocalization length of Pt(II) aggregates, which is 5-9 molecules (2.1-4.5 nm) assuming that excitons mainly delocalized along the direction of ππ stacking. According to the dependence of delocalization length vs simulated IC rates, we verify that the observed delocalization lengths contribute to the high NIR PLQY of the aggregated Pt(II) complexes. To probe the isotope effect, both partially and completely deuterated Pt(II) complexes were synthesized. For the case of the 970 nm Pt(II) emitter, the vapor deposited films of per-deuterated Pt(II) complexes exhibit the same emission peak as that of the nondeuterated one, whereas PLQY increases ∼50%. To put the fundamental studies into practice, organic light-emitting diodes (OLEDs) were fabricated with a variety of NIR Pt(II) complexes as the emitting layer, showing the outstanding external quantum efficiencies (EQEs) of 2-25% and the remarkable radiances 10-40 W sr-1 m-2 at 740-1002 nm. The prominent device performances not only successfully prove our designed concept but also reach a new milestone for highly efficient NIR OLED devices.This Account thus summarizes our approaches about how to boost the efficiency of the NIR emission of organic molecules from an in-depth fundamental basis, i.e., molecular design, photophysical characterization, and device fabrication. The concept of the exciton delocalization and molecular deuteration may also be applicable to a single molecular system to achieve efficient NIR radiance, which is worth further investigation in the future.

3.
Chemistry ; 30(36): e202401063, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38654592

RESUMEN

14,14'-Bidibenzo[a,j]anthracenes (BDBAs) were prepared by iridium-catalyzed annulation of 5,5'-biterphenylene with alkynes. The molecular geometries of overcrowded BDBAs were verified by X-ray crystallography. The two dibenzo[a,j]anthryl moieties are connected through the sterically hindered 14 positions, resulting in highly distorted molecular halves. The conformation with a small twist angle between two molecular halves can minimize steric conflicts between the substituents at 1 and 13 positions and the carbon atoms of the central axis, as well as steric clashes between those substituents. One such example is octafluoro-substituted BDBA, where the interplanar angle between two anthryl moieties is approximately 31° (currently the lowest reported value, cf. 81° in 9,9'-bianthracene). The intramolecular interactions and electronic couplings between two molecular halves resulted in upfield 1H NMR signals, redshifted absorption and emission bands, and a reduced HOMO-LUMO gap. Photodynamic investigations on BDBAs indicated that the formation of the conventional symmetry-breaking charge transfer (SBCT) state was suspended by restricted rocking around the central C-C bond. Such a mechanism associated with this highly constrained conformation was examined for the first time.

4.
Chemistry ; 30(11): e202303523, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37997021

RESUMEN

A new series of biaryls, bi-linear-terphenylenes (BLTPs), were prepared using the tert-butyllithium-mediated cyclization as the key synthetic step. The three-dimensional structures of the studied compounds were verified using X-ray crystallography and DFT calculations. Tetraaryl(ethynyl)-substituted BLTPs are highly crowded molecules, and the internal rotation around the central C-C bond is restricted due to a high barrier (>50 kcal/mol). These structures contain several aryl/terphenylenyl/aryl sandwiches, where the through-space π-π (TSPP) interactions are strongly reflected in the shielding of 1 H NMR chemical shifts, reduction of oxidation potentials, increasing aromaticity of the central six-membered ring and decreasing antiaromaticity of the four-membered rings in a terphenylenyl moiety based on NICS(0) and iso-chemical shielding surfaces. Despite the restricted C-C bond associated intramolecular TSPP interactions for BLTPs in the ground state, to our surprise, the electronic coupling between two linear terphenylenes (LTPs) in BLTPs in the excited state is weak, so that the excited-state behavior is dominated by the corresponding monomeric LTPs. In other words, all BLTPs undergo ultrafast relaxation dynamics via strong exciton-vibration coupling, acting as a blue-light absorber with essentially no emission.

5.
Angew Chem Int Ed Engl ; 63(10): e202317571, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38230818

RESUMEN

Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr-1 m-2 ) and 16.6 % (radiance of 32,279 mW Sr-1 m-2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.

6.
Angew Chem Int Ed Engl ; 63(16): e202401103, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412017

RESUMEN

Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through-space coupling, making it a relevant model for solid-state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short-lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through-space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology-compatible SF systems for applications in photovoltaics.

7.
Angew Chem Int Ed Engl ; 63(23): e202403317, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578721

RESUMEN

We demonstrate directed translocation of ClO4 - anions from cationic to neutral binding site along the synthetized BPym-OH dye molecule that exhibits coupled excited-state intramolecular proton-transfer (ESIPT) and charge-transfer (CT) reaction (PCCT). The results of steady-state and time-resolved spectroscopy together with computer simulation and modeling show that in low polar toluene the excited-state redistribution of electronic charge enhanced by ESIPT generates the driving force, which is much stronger than by CT reaction itself and provides more informative gigantic shifts of fluorescence spectra signaling on ultrafast ion motion. The associated with ion translocation red-shifted fluorescence band (at 750 nm, extending to near-IR region) appears at the time ~83 ps as a result of electrochromic modulation of PCCT reaction. It occurs at substantial delay to PCCT that displayed fluorescence band at 640 nm and risetime of <200 fs. Thus, it becomes possible to visualize the manifestations of light-triggered ion translocation and of its driving force by fluorescence techniques and to separate them in time and energy domains.

8.
J Am Chem Soc ; 145(32): 18104-18114, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37534396

RESUMEN

Aryl transfer between heteroatoms was photochemically available through radical initiation followed by a bimolecular reaction. However, such an excited-state reaction has rarely been reported through a photoinduced intramolecular pathway in the π-conjugated systems. Herein, we found, for the first time, a clean photoinduced intramolecular aryl shift for imidazolyl-quinoline derivatives 2NQ (imidazophenanthrene) and 4NQX (imidazophenanthroline), of which the photoproducts are thermally reversible. Upon light irradiation of the studied compounds in solution, an appreciable blue fluorescence along with a gradual change in color appearance was observed, the photoluminescence and photoconversion quantum yields of which were shown to be competitive in the same excited state. We were able to harness the photoconversion quantum yields of the NQ compounds with facile electronic modifications. These, in combination with time-resolved studies on the NQ compounds, gave an oxygen-insensitive aryl transfer rate within 1-100 ns. The anomalously slow intramolecular reaction rates were further proven to be associated with the ∼5.0 kcal/mol transition free energy. The photoproducts NQ_rs were isolated, identified by X-ray analyses, and also shown to demonstrate anti-Vavilov reverse reactions back to the NQ compounds in the higher-lying excited state. The discovery of photoinduced intramolecular aryl transfer paves a new pathway in the synthetic field, which may also be extended and far-reaching to solar-chemical storage under an appropriate design strategy.

9.
J Am Chem Soc ; 145(1): 516-526, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36562565

RESUMEN

Organic molecules having emission in the NIR(II) region are emergent and receiving enormous attention. Unfortunately, attaining accountable organic emission intensity around the NIR(II) region is hampered by the dominant internal conversion operated by the energy gap law, where the emission energy gap and the associated internal reorganization energy λint play key roles. Up to the current stage, the majority of the reported organic NIR(II) emitters belong to those polymethines terminated by two symmetric chromophores. Such a design has proved to have a small λint that greatly suppresses the internal conversion. However, the imposition of symmetric chromophores is stringent, limiting further development of organic NIR(II) dyes in diversity and versatility. Here, we propose a new concept where as far as the emissive state of the any asymmetric polymethines contains more or less equally transition density between two terminated chromophores, λint can be as small as that of the symmetric polymethines. To prove the concept, we synthesize a series of new polymethines terminated by xanthen-9-yl-benzoic acid and 2,4-diphenylthiopyrylium derivatives, yielding AJBF1112 and AEBF1119 that reveal emission peak wavelength at 1112 and 1119 nm, respectively. The quantum yield is higher than all synthesized symmetric polymethines of 2,4-diphenylthiopyrylium derivatives (SC1162, 1182, 1185, and 1230) in this study. λint were calculated to be as small as 6.2 and 7.3 kcal/mol for AJBF1112 and AEBF1119, respectively, proving the concept. AEBF1119 was further prepared as a polymer dot to demonstrate its in vitro specific cellular imaging and in vivo tumor/bone targeting in the NIR(II) region.


Asunto(s)
Colorantes Fluorescentes , Indoles
10.
Chemistry ; 29(21): e202203660, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36650716

RESUMEN

Two new 2,3-dicyanopyrazinophenanthrene-based acceptors (A) p-QCN and m-QCN were synthesized to blend with a donor (D) CPTBF for the exciplex formation. The energy levels of p-QCN and m-QCN are modulated by the peripheral substituents 4- and 3-benzonitrile, respectively. Exciplex-forming blends were identified by the observation of the red-shifted emissions from various D : A blends with higher ratios of donor for suppressing the aggregation of acceptor. The two-component relaxation processes observed by time-resolved photoluminescence support the thermally activated delayed fluorescence (TADF) character of the exciplex-forming blends. The device employing CPTBF : p-QCN and (2 : 1) and CPTBF : m-QCN (2 : 1) blend as the emitting layer (EML) gave EQEmax of 1.76 % and 5.12 %, and electroluminescence (EL) λmax of 629 nm and 618 nm, respectively. The device efficiency can be further improved to 4.32 % and 5.57 % with CPTBF : p-QCN and (4 : 1) and CPTBF : m-QCN (4 : 1) as the EML, which is consistent with their improved photoluminescence quantum yields (PLQYs). A new fluorescent emitter BPBBT with photoluminescence (PL) λmax of 726 nm and a high PLQY of 67 % was synthesized and utilized as the dopant of CPTBF : m-QCN (4 : 1) cohost system. The device employing CPTBF : m-QCN (4 : 1): 5 wt.% BPBBT as the EML gave an EQEmax of 5.02 % and EL λmax centered at 735 nm, however, the weak residual exciplex emission remains. By reducing the donor ratio, the exciplex emission can be completely transferred to BPBBT and the corresponding device with CPTBF : m-QCN (2 : 1): 5 wt.% BPBBT as the EML can achieve EL λmax of 743 nm and EQEmax of 4.79 %. This work manifests the high efficiency near infrared (NIR) OLED can be realized by triplet excitons harvesting of exciplex-forming cohost system, followed by the effective energy transfer to an NIR fluorescent dopant.

11.
Chemistry ; 29(44): e202301073, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37212544

RESUMEN

Phosphonium-based compounds gain attention as promising photofunctional materials. As a contribution to the emerging field, we present a series of donor-acceptor ionic dyes, which were constructed by tailoring phosphonium (A) and extended π-NR2 (D) fragments to an anthracene framework. The alteration of the π-spacer of electron-donating substituents in species with terminal -+ PPh2 Me groups exhibits a long absorption wavelength up to λabs =527 nm in dichloromethane and shifted the emission to the near-infrared (NIR) region (λ=805 nm for thienyl aniline donor), although at low quantum yield (Φ<0.01). In turn, the introduction of a P-heterocyclic acceptor substantially narrowed the optical bandgap and improved the efficiency of fluorescence. In particular, the phospha-spiro moiety allowed to attain NIR emission (797 nm in dichloromethane) with fluorescence efficiency as high as Φ=0.12. The electron-accepting property of the phospha-spiro constituent outperformed that of the monocyclic and terminal phosphonium counterparts, illustrating a promising direction in the design of novel charge-transfer chromophores.

12.
Phys Chem Chem Phys ; 25(13): 9115-9122, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36928330

RESUMEN

In this study, we explore the possibilities of the deactivating pathways of organic thione containing systems through first-principles calculations. We particularly pay attention to the second lying singlet excited state, S2, due to its large energy difference from the lowest lying S1 state in the sulfur-containing systems. Several theoretical models including the previously synthesized thiones and the strategically designed molecules are investigated to search for the basic conjugation unit that exhibits the prospect of S2 fission. Various molecular motifs and different substituents are combined to maneuver the relative alignment of the relevant low excited energy states. The results lead us to conclude that the thione derivatives, under rational and delicate molecular designs, may be engineered to possess a sufficiently high S2-S1 energy gap as high as 2 eV and that these systems may exhibit S2 fission to triplet excitons in the red to near infrared region.

13.
Phys Chem Chem Phys ; 25(42): 28824-28828, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37853830

RESUMEN

Quadrupolar bis-coumarins bearing dialkylamino groups, prepared by a double Pechmann reaction and subsequent oxidation, strongly emit yellow-orange light. Comparison with non-substituted analogs reveals that, the photophysical properties of the conjugated bis-coumarins are controlled both by the dialkylamino substituents and by the π-system. Analogous but non-conjugated bis-coumarins emit blue light both in solution and in crystalline state. Unusually fast oxidation process in the crystalline state is responsible for the presence of two bands in their solid-state emission. Two-center, charge-transfer transition from an orbital delocalized on the entire molecule to the central benzene ring is responsible for photophysical properties.

14.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834871

RESUMEN

Excited state intramolecular proton transfer (ESIPT) dynamics of the o-hydroxy analogs of the green fluorescent protein (GFP) chromophore have been investigated by time-resolved spectroscopies and theoretical calculations. These molecules comprise an excellent system to investigate the effect of electronic properties on the energetics and dynamics of ESIPT and to realize applications in photonics. Time-resolved fluorescence with high enough resolution was employed to record the dynamics and the nuclear wave packets in the excited product state exclusively in conjunction with quantum chemical methods. The ESIPT are ultrafast occurring in 30 fs for the compounds employed in this work. Although the ESIPT rates are not affected by the electronic properties of the substituents suggesting barrierless reaction, the energetics, their structures, subsequent dynamics following ESIPT, and possibly the product species are distinct. The results attest that fine tuning of the electronic properties of the compounds may modify the molecular dynamics of ESIPT and subsequent structural relaxation to achieve brighter emitters with broad tuning capabilities.


Asunto(s)
Simulación de Dinámica Molecular , Protones , Proteínas Fluorescentes Verdes/metabolismo , Espectrometría de Fluorescencia
15.
Angew Chem Int Ed Engl ; 62(40): e202309831, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37594921

RESUMEN

Self-assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid-functionalized porphyrin derivatives, namely AC-1, AC-3, and AC-5, and present, for the first time, a strategy to exploit the large π-moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron-rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects. Comprehensive spectroscopic and dynamic studies demonstrate that the double-anchored AC-3 and AC-5 enhance SAMs on ITO, passivate the perovskite layer, and function as conduits to facilitate hole transfer, thus significantly boosting the performance of PSCs. The champion inverted PSC employing AC-5 SAM achieves an impressive solar efficiency of 23.19 % with a high fill factor of 84.05 %. This work presents a novel molecular engineering strategy for functionalizing SAMs to tune the energy levels, molecular dipoles, packing orientations to achieve stable and efficient solar performance. Importantly, our comprehensive investigation has unraveled the associated mechanisms, offering valuable insights for future advancements in PSCs.

16.
Angew Chem Int Ed Engl ; 62(36): e202305108, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37227225

RESUMEN

Crystalline diphosphonium iodides [MeR2 P-spacer-R2 Me]I with phenylene (1, 2), naphthalene (3, 4), biphenyl (5) and anthracene (6) as aromatic spacers, are photoemissive under ambient conditions. The emission colors (λem values from 550 to 880 nm) and intensities (Φem reaching 0.75) are defined by the composition and substitution geometry of the central conjugated chromophore motif, and the anion-π interactions. Time-resolved and variable-temperature luminescence studies suggest phosphorescence for all the titled compounds, which demonstrate observed lifetimes of 0.46-92.23 µs at 297 K. Radiative rate constants kr as high as 2.8×105  s-1 deduced for salts 1-3 were assigned to strong spin-orbit coupling enhanced by an external heavy atom effect arising from the anion-π charge-transfer character of the triplet excited state. These rates of anomalously fast metal-free phosphorescence are comparable to those of transition metal complexes and organic luminophores that utilize triplet excitons via a thermally activated delayed fluorescence mechanism, making such ionic luminophores a new paradigm for the design of photofunctional and responsive molecular materials.

17.
Angew Chem Int Ed Engl ; 62(16): e202300815, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36825300

RESUMEN

The exploration of deactivation mechanisms for near-infrared(NIR)-emissive organic molecules has been a key issue in chemistry, materials science and molecular biology. In this study, based on transient absorption spectroscopy and transient grating photoluminescence spectroscopy, we demonstrate that the aggregated PtII complex 4H (efficient NIR emitter) exhibits collective out-of-plane motions with a frequency of 32 cm-1 (0.96 THz) in the excited states. Importantly, similar THz characteristics were also observed in analogous PtII complexes with prominent NIR emission efficiency. The conservation of THz motions enables excited-state deactivation to proceed along low-frequency vibrational coordinates, contributing to the suppression of nonradiative decay and remarkable NIR emission. These novel results highlight the significance of excited-state vibrations in nonradiative processes, which serve as a benchmark for improving device performance.

18.
J Am Chem Soc ; 144(4): 1748-1757, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35067055

RESUMEN

In sharp contrast to most photoinduced structural planarization (PISP) phenomena, which are highly exergonic and irreversible processes, we report here a series of a new class of PISP molecules, 9-phenyl-9H-tribenzo[b,d,f]azepine (PTBA) and its derivatives, where PISP is within the thermally reversible regime. The underlying foundation is the energy counterbalance along PISP, where upon electronic excitation the azepine core chromophore undergoes planarization to gain stabilization from a cyclic 4n π conjugation (n is an integer; Baird's rule). Concurrently, the C7═C8 fused benzene ring is prone to gain aromaticity, which conversely decreases the 4n π-electron resonance stabilization of the 9H-tribenzo[b,d,f]azepine, hindering a full planarization. The offset results in a minimum energy state (P*) along PISP that is in thermal equilibrium with the initially prepared state (R*). The relaxed structure of R* deviates greatly from the planar configuration commonly seen in PISP. PISP of PTBAs is thus sensitive to the solvent polarity, temperature, and substituents, causing prominent stimuli-dependent ratiometric fluorescence for R* versus P*. Exploitation of the energy counterbalance effect proves to be a practical strategy for harnessing excited-state structural relaxation.

19.
J Am Chem Soc ; 144(32): 14897-14906, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35924834

RESUMEN

Two-dimensional (2D) Dion-Jacobson (DJ) perovskite solar cells (PSCs), despite their advantage in versatility of n-layer variation, are subject to poor photovoltaic efficiency, particularly in the fill factor (FF), compared to their three-dimensional counterparts. To enhance the performance of DJ PSCs, the process of growing crystals and hence the corresponding morphology of DJ perovskites are of prime importance. Herein, we report the fast nonisothermal (NIT) crystallization protocol that is previously unrecognized for 2D perovskites to significantly improve the morphology, orientation, and charge transport of the DJ perovskite films. Comprehensive mechanistic studies reveal that the NIT effect leads to the secondary crystallization stage, forming network-like channels that play a vital role in the FF's leap-forward improvement and hence the DJ PSC's performance. As a whole, the NIT crystallized PSCs demonstrate a high power conversion efficiency and an FF of up to 19.87 and 86.16%, respectively. This research thus provides new perspectives to achieve highly efficient DJ PSCs.


Asunto(s)
Compuestos de Calcio , Óxidos , Cristalización , Titanio
20.
J Am Chem Soc ; 144(37): 17249-17260, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069676

RESUMEN

In this study, the chromophore 3,4,9,10-perylenetetracarboxylic diimide (PDI) is anchored with phenyl substituents at the imide N site, followed by thionation, yielding a series of thione products 1S-PDI-D, 2S-cis-PDI-D, 2S-trans-PDI-D, 3S-PDI-D, and 4S-PDI-D, respectively, with n = 1, 2, 3, and 4 thione. The photophysical properties are dependent on the number of anchored thiones, where the observed prominent lower-lying absorption is assigned to the S0 → S2(ππ*) transition and is red-shifted upon increasing the number of thiones; the lowest-lying excited state is ascribed to a transition-forbidden S1(nπ*) configuration. All nS-PDIs are non-emissive in solution but reveal an excellent two-photon absorption cross-section of >800 GM. Supported by the femtosecond transient absorption study, the S1(nπ*) → T1(ππ*) intersystem crossing (ISC) rate is > 1012 s-1, resulting in ∼100% triplet population. The lowest-lying T1(ππ*) energy is calculated to be in the order of 1S-PDI-D > 2S-cis-PDI-D ∼ 2S-trans-PDI-D > 3S-PDI-D > 4S-PDI-D, where the T1 energy of 1S-PDI-D (1.10 eV) is higher than that (0.97 eV) of the 1O2 1Δg state. 1S-PDI-D is further modified by either conjugation with peptide FC131 on the two terminal sides, forming 1S-FC131, or linkage with peptide FC131 and cyanine5 dye on each terminal, yielding Cy5-1S-FC131. In vitro experiments show power of 1S-FC131 and Cy5-1S-FC131 in recognizing A549 cells out of other three lung normal cells and effective photodynamic therapy. In vivo, both molecular composites demonstrate outstanding antitumor ability in A549 xenografted tumor mice, where Cy5-1S-FC131 shows superiority of simultaneous fluorescence tracking and targeted photodynamic therapy.


Asunto(s)
Perileno , Fotoquimioterapia , Animales , Carbocianinas , Imidas/química , Ratones , Perileno/química , Perileno/farmacología , Tionas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA