Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 151(7): 1474-87, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23260137

RESUMEN

DNA Ligase IV is responsible for sealing of double-strand breaks (DSBs) during nonhomologous end-joining (NHEJ). Inhibiting Ligase IV could result in amassing of DSBs, thereby serving as a strategy toward treatment of cancer. Here, we identify a molecule, SCR7 that inhibits joining of DSBs in cell-free repair system. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding but not that of T4 DNA Ligase or Ligase I. SCR7 inhibits NHEJ in a Ligase IV-dependent manner within cells, and activates the intrinsic apoptotic pathway. More importantly, SCR7 impedes tumor progression in mouse models and when coadministered with DSB-inducing therapeutic modalities enhances their sensitivity significantly. This inhibitor to target NHEJ offers a strategy toward the treatment of cancer and improvement of existing regimens.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , ADN Ligasas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pirimidinas/uso terapéutico , Bases de Schiff/uso terapéutico , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , ADN Ligasa (ATP) , ADN Ligasas/química , ADN Ligasas/genética , Modelos Animales de Enfermedad , Diseño de Fármacos , Resistencia a Antineoplásicos , Humanos , Linfocitos/efectos de los fármacos , Linfoma/tratamiento farmacológico , Linfoma/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Pirimidinas/síntesis química , Pirimidinas/química , Tolerancia a Radiación , Ratas , Bases de Schiff/síntesis química , Bases de Schiff/química , Alineación de Secuencia
2.
J Immunol ; 213(8): 1125-1138, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39269689

RESUMEN

The process of Ag receptor diversity is initiated by RAGs consisting of RAG1 and RAG2 in developing lymphocytes. Besides its role as a sequence-specific nuclease during V(D)J recombination, RAGs can also act as a structure-specific nuclease leading to genome instability. Thus, regulation of RAG expression is essential to maintaining genome stability. Previously, the role of miR29c in the regulation of RAG1 was identified. In this article, we report the regulation of RAG1 by miR-29a in the lymphocytes of both mice (Mus musculus) and humans (Homo sapiens). The level of RAG1 could be modulated by overexpression of miR-29a and inhibition using anti-miRs. Argonaute2-immunoprecipitation and high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation studies established the association of miR-29a and RAG1 with Argonaute proteins. We observed a negative correlation between miR-29a and RAG1 levels in mouse B and T cells and leukemia patients. Overexpression of pre-miR-29a in the bone marrow cells of mice led to the generation of mature miR-29a transcripts and reduced RAG1 expression, which led to a significant reduction in V(D)J recombination in pro-B cells. Importantly, our studies are consistent with the phenotype reported in miR-29a knockout mice, which showed impaired immunity and survival defects. Finally, we show that although both miR-29c and miR-29a can regulate RAG1 at mRNA and protein levels, miR-29a substantially impacts immunity and survival. Our results reveal that the repression of RAG1 activity by miR-29a in B cells of mice and humans is essential to maintain Ig diversity and prevent hematological malignancies resulting from aberrant RAG1 expression in lymphocytes.


Asunto(s)
Proteínas Argonautas , Proteínas de Homeodominio , MicroARNs , Animales , Humanos , Ratones , MicroARNs/genética , MicroARNs/inmunología , Proteínas de Homeodominio/genética , Proteínas Argonautas/genética , Linfocitos B/inmunología , Regulación de la Expresión Génica/inmunología , Linfocitos T/inmunología , Ratones Endogámicos C57BL , Sistema Inmunológico/inmunología
3.
Cell Mol Life Sci ; 81(1): 21, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196006

RESUMEN

BCL6 translocation is one of the most common chromosomal translocations in cancer and results in its enhanced expression in germinal center B cells. It involves the fusion of BCL6 with any of its twenty-six Ig and non-Ig translocation partners associated with diffuse large B cell lymphoma (DLBCL). Despite being discovered long back, the mechanism of BCL6 fragility is largely unknown. Analysis of the translocation breakpoints in 5' UTR of BCL6 reveals the clustering of most of the breakpoints around a region termed Cluster II. In silico analysis of the breakpoint cluster sequence identified sequence motifs that could potentially fold into non-B DNA. Results revealed that the Cluster II sequence folded into overlapping hairpin structures and identified sequences that undergo base pairing at the stem region. Further, the formation of cruciform DNA blocked DNA replication. The sodium bisulfite modification assay revealed the single-strandedness of the region corresponding to hairpin DNA in both strands of the genome. Further, we report the formation of intramolecular parallel G4 and triplex DNA, at Cluster II. Taken together, our studies reveal that multiple non-canonical DNA structures exist at the BCL6 cluster II breakpoint region and contribute to the fragility leading to BCL6 translocation in DLBCL patients.


Asunto(s)
Linfoma de Células B Grandes Difuso , Translocación Genética , Humanos , Translocación Genética/genética , Reordenamiento Génico , Linfoma de Células B Grandes Difuso/genética , Linfocitos B , Regiones no Traducidas 5' , ADN , Proteínas Proto-Oncogénicas c-bcl-6/genética
4.
PLoS Genet ; 18(10): e1010421, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36228010

RESUMEN

Chromosomal translocations are considered as one of the major causes of lymphoid cancers. RAG complex, which is responsible for V(D)J recombination, can also cleave non-B DNA structures and cryptic RSSs in the genome leading to chromosomal translocations. The mechanism and factors regulating the illegitimate function of RAGs resulting in oncogenesis are largely unknown. Upon in silico analysis of 3760 chromosomal translocations from lymphoid cancer patients, we find that 93% of the translocation breakpoints possess adjacent cryptic nonamers (RAG binding sequences), of which 77% had CpGs in proximity. As a proof of principle, we show that RAGs can efficiently bind to cryptic nonamers present at multiple fragile regions and cleave at adjacent mismatches generated to mimic the deamination of CpGs. ChIP studies reveal that RAGs can indeed recognize these fragile sites on a chromatin context inside the cell. Finally, we show that AID, the cytidine deaminase, plays a significant role during the generation of mismatches at CpGs and reconstitute the process of RAG-dependent generation of DNA breaks both in vitro and inside the cells. Thus, we propose a novel mechanism for generation of chromosomal translocation, where RAGs bind to the cryptic nonamer sequences and direct cleavage at adjacent mismatch generated due to deamination of meCpGs or cytosines.


Asunto(s)
Neoplasias , Translocación Genética , Humanos , Cromatina , Citidina Desaminasa/genética , ADN/genética , Proteínas de Homeodominio/metabolismo , Neoplasias/genética , Translocación Genética/genética , Islas de CpG
5.
J Biol Chem ; 299(12): 105431, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926284

RESUMEN

t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.


Asunto(s)
Linfoma de Burkitt , G-Cuádruplex , Humanos , Linfoma de Burkitt/genética , Linfoma de Burkitt/patología , ADN , Genes myc , Estructuras R-Loop , Translocación Genética
6.
Biochem J ; 480(24): 2061-2077, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38084601

RESUMEN

The stringent regulation of RAGs (Recombination activating genes), the site-specific endonuclease responsible for V(D)J recombination, is important to prevent genomic rearrangements and chromosomal translocations in lymphoid cells. In the present study, we identify a microRNA, miR-501, which can regulate the expression of RAG1 in lymphoid cells. Overexpression of the pre-miRNA construct led to the generation of mature miRNAs and a concomitant reduction in RAG1 expression, whereas inhibition using anti-miRs resulted in its enhanced expression. The direct interaction of the 3'UTR of miR-501 with RAG1 was confirmed by the reporter assay. Importantly, overexpression of miRNAs led to inhibition of V(D)J recombination in B cells, revealing their impact on the physiological function of RAGs. Of interest is the inverse correlation observed for miR-501 with RAG1 in various leukemia patients and lymphoid cell lines, suggesting its possible use in cancer therapy. Thus, our results reveal the regulation of RAG1 by miR-501-3p in B cells and thus V(D)J recombination and its possible implications on immunoglobulin leukemogenesis.


Asunto(s)
MicroARNs , Recombinación V(D)J , Humanos , Recombinación V(D)J/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , Linfocitos B
7.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928195

RESUMEN

Targeted cancer therapy aims to disrupt the functions of proteins that regulate cancer progression, mainly by using small molecule inhibitors (SMIs). SMIs exert their effect by modulating signalling pathways, organelle integrity, chromatin components, and several biosynthetic processes essential for cell division and survival. Antiapoptotic protein BCL2 is highly upregulated in many cancers compared with normal cells, making it an ideal target for cancer therapy. Around 75% of primary breast cancers overexpress BCL2, providing an opportunity to explore BCL2 inhibitors as a therapeutic option. Disarib is an SMI that has been developed as a selective BCL2 inhibitor. Disarib works by disrupting BCL2-BAK interaction and activating intrinsic apoptotic pathways in leukemic cells while sparing normal cells. We investigated the effects of Disarib, a BCL2 specific inhibitor, on breast cancer cells and xenografts. Cytotoxicity and fluorometric assays revealed that Disarib induced cell death by increasing reactive oxygen species and activating intrinsic apoptotic pathways in Triple-Negative Breast Cancer cells (MDA-MB-231 and MDA-MB-468). Disarib also affected the colony-forming properties of these cells. MDA-MB-231- and MDA-MB-468-derived xenografts showed a significant reduction in tumours upon Disarib treatment. Through the transcriptomics approach, we also explored the influence of BCL2 inhibitors on energy metabolism, mitochondrial dynamics, and epithelial-to-mesenchymal transition (EMT). Mitochondrial dynamics and glucose metabolism mainly regulate energy metabolism. The change in energetics regulates tumour growth through epithelial-mesenchymal transition, and angiogenesis. RNA sequencing (RNAseq) analysis revealed that BCL2 inhibitors ABT-199 and Disarib maintain Oxphos levels in MDA-MB-231. However, key glycolytic genes were significantly downregulated. Mitochondrial fission genes were seen to be downregulated both in RNAseq data and semi quantitative real time polymerase chain reaction (qRTPCR) in Disarib-treated TNBC cells and xenografts. Lastly, Disarib inhibited wound healing and epithelial-to-mesenchymal transition. This study showed that Disarib disrupts mitochondrial function, activates the intrinsic apoptotic pathway in breast cancer, and inhibits epithelial-to-mesenchymal transition both in vitro and in vivo. These findings highlight Disarib's potential as a multifaceted therapeutic strategy for patients with Triple-Negative Breast Cancer.


Asunto(s)
Apoptosis , Mitocondrias , Proteínas Proto-Oncogénicas c-bcl-2 , Neoplasias de la Mama Triple Negativas , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Humanos , Animales , Apoptosis/efectos de los fármacos , Femenino , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Línea Celular Tumoral , Antineoplásicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos
8.
Molecules ; 28(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446888

RESUMEN

Despite several treatment options for blood cancer, mortality remains high due to relapse and the disease's aggressive nature. Elevated levels of HSP90, a molecular chaperone essential for protein folding, are associated with poor prognosis in leukemia and lymphoma. HSP90 as a target for chemotherapy has been met with limited success due to toxicity and induction of heat shock. This study tested the activity of an HSP90 inhibitor, SP11, against leukemic cells, mouse lymphoma allograft, and xenograft models. SP11 induced cytotoxicity in vitro in leukemic cell lines and induced cell death via apoptosis, with minimal effect on normal cells. SP11 induced cell death by altering the status of HSP90 client proteins both in vitro and in vivo. SP11 reduced the tumor burden in allograft and xenograft mouse models without apparent toxicity. The half-life of SP11 in the plasma was approximately 2 h. SP11 binding was observed at both the N-terminal and C-terminal domains of HSP90. C-terminal binding was more potent than N-terminal binding of HSP90 in silico and in vitro using isothermal calorimetry. SP11 bioavailability and minimal toxicity in vivo make it a potential candidate to be developed as a novel anticancer agent.


Asunto(s)
Antineoplásicos , Cumarinas , Humanos , Animales , Ratones , Cumarinas/farmacología , Línea Celular Tumoral , Proteínas HSP90 de Choque Térmico/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Pliegue de Proteína , Apoptosis
9.
BMC Genomics ; 23(1): 807, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36474139

RESUMEN

ST08 and ST09 are potent curcumin derivatives with antiproliferative, apoptotic, and migrastatic properties. Both ST08 and ST09 exhibit in vitro and in vivo anticancer properties. As reported earlier, these derivatives were highly cytotoxic towards MDA-MB-231 triple-negative breast cancer cells with IC50 values in the nanomolar (40-80nM) range.In this study,we performed whole-genome bisulfite sequencing(WGBS) of untreated (control), ST08 and ST09 (treated) triple-negative breast cancer cell line MDA-MB-231 to unravel epigenetic changes induced by the drug. We identified differentially methylated sites (DMSs) enriched in promoter regions across the genome. Analysis of the CpG island promoter methylation identified 12 genes common to both drugs, and 50% of them are known to be methylated in patient samples that were hypomethylated by drugs belonging to the homeobox family transcription factors.Methylation analysis of the gene body revealed 910 and 952 genes to be hypermethylatedin ST08 and ST09 treated MDA-MB-231 cells respectively. Correlation of the gene body hypermethylation with expression revealed CACNAH1 to be upregulated in ST08 treatment and CDH23 upregulation in ST09.Further, integrated analysis of the WGBS with RNA-seq identified uniquely altered pathways - ST08 altered ECM pathway, and ST09 cell cycle, indicating drug-specific signatures.


Asunto(s)
Curcumina , Neoplasias de la Mama Triple Negativas , Humanos , Curcumina/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Metilación de ADN
10.
Mol Carcinog ; 60(9): 627-643, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34192388

RESUMEN

Nonhomologous end joining (NHEJ), one of the major DNA double-strand break repair pathways, plays a significant role in cancer cell proliferation and resistance to radio and chemotherapeutic agents. Previously, we had described a small molecule inhibitor, SCR7, which inhibited NHEJ in a DNA Ligase IV dependent manner. Here, we report that SCR7 potentiates the effect of γ-radiation (IR) that induces DNA breaks as intermediates to eradicate cancer cells. Dose fractionation studies revealed that coadministration of SCR7 and IR (0.5 Gy) in mice Dalton's lymphoma (DLA) model led to a significant reduction in mice tumor cell proliferation, which was equivalent to that observed for 2 Gy dose when both solid and liquid tumor models were used. Besides, co-treatment with SCR7 and 1 Gy of IR further improved the efficacy. Notably, there was no significant change in blood parameters, kidney and liver functions upon combinatorial treatment of SCR7 and IR. Further, the co-treatment of SCR7 and IR resulted in a significant increase in unrepaired DSBs within cancer cells compared to either of the agent alone. Anatomy, histology, and other studies in tumor models confirmed the cumulative effects of both agents in activating apoptotic pathways to induce cytotoxicity by modulating DNA damage response and repair pathways. Thus, we report that SCR7 has the potential to reduce the side effects of radiotherapy by lowering its effective dose ex vivo and in mice tumor models, with implications in cancer therapy.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Pirimidinas/farmacología , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones/farmacología , Bases de Schiff/farmacología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Ligasa (ATP)/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Biochem J ; 477(18): 3567-3582, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32886094

RESUMEN

Recombination activating genes (RAGs), consisting of RAG1 and RAG2 have ability to perform spatially and temporally regulated DNA recombination in a sequence specific manner. Besides, RAGs also cleave at non-B DNA structures and are thought to contribute towards genomic rearrangements and cancer. The nonamer binding domain of RAG1 binds to the nonamer sequence of the signal sequence during V(D)J recombination. However, deletion of NBD did not affect RAG cleavage on non-B DNA structures. In the present study, we investigated the involvement of other RAG domains when RAGs act as a structure-specific nuclease. Studies using purified central domain (CD) and C-terminal domain (CTD) of the RAG1 showed that CD of RAG1 exhibited high affinity and specific binding to heteroduplex DNA, which was irrespective of the sequence of single-stranded DNA, unlike CTD which showed minimal binding. Furthermore, we show that ZnC2 of RAG1 is crucial for its binding to DNA structures as deletion and point mutations abrogated the binding of CD to heteroduplex DNA. Our results also provide evidence that unlike RAG cleavage on RSS, central domain of RAG1 is sufficient to cleave heteroduplex DNA harbouring pyrimidines, but not purines. Finally, we show that a point mutation in the DDE catalytic motif is sufficient to block the cleavage of CD on heteroduplex DNA. Therefore, in the present study we demonstrate that the while ZnC2 module in central domain of RAG1 is required for binding to non-B DNA structures, active site amino acids are important for RAGs to function as a structure-specific nuclease.


Asunto(s)
Proteínas de Homeodominio/química , Ácidos Nucleicos Heterodúplex/química , Secuencias de Aminoácidos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Dominios Proteicos , Relación Estructura-Actividad , Recombinación V(D)J
12.
Molecules ; 25(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008036

RESUMEN

PURPOSE: Curcumin is known for its anticancer and migrastatic activity in various cancers, including breast cancer. Newer curcumin derivatives are being explored to overcome limitations of curcumin like low bioavailability, stability, and side effects due to its higher dose. In this study, the synthesis of ST09, a novel curcumin derivative, and its antiproliferative, cytotoxic, and migrastatic properties have been explored both in vitro and in vivo. METHODS: After ST09 synthesis, anticancer activity was studied by performing standard cytotoxicity assays namely, lactate dehydrogenase (LDH) release assay, 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyletrazolium bromide (MTT), and trypan blue exclusion assay. Annexin-FITC, cell cycle analysis using flow cytometry, and Western blotting were performed to elucidate cell death mechanisms. The effect on the inhibition of cell migration was studied by transwell migration assay. An EAC (Ehrlich Ascites carcinoma) induced mouse tumor model was used to study the effect of ST09 on tumor regression. Drug toxicity was measured using aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and flow-cytometry based lymphocyte count. Histological analysis was performed for assessment of any tissue injury post ST09 treatment. RESULTS: ST09 shows an approximate 100-fold higher potency than curcumin, its parent compound, on breast tumor cell lines MCF-7 and MDA-MB231. ST09 arrests the cell cycle in a cell type-specific manner and induces an intrinsic apoptotic pathway both in vitro and in vivo. ST09 inhibits migration by downregulating matrix metalloprotease 1,2 (MMP1,2) and Vimentin. In vivo, ST09 administration led to decreased tumor volume in a mouse allograft model by boosting immunity with no significant drug toxicity. CONCLUSION: ST09 exhibits antiproliferative and cytotoxic activity at nanomolar concentrations. It induces cell death by activation of the intrinsic pathway of apoptosis both in vitro and in vivo. It also inhibits migration and invasion. This study provides evidence that ST09 can potentially be developed as a novel antitumor drug candidate for highly metastatic and aggressive breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/farmacología , Progresión de la Enfermedad , Neoplasias Mamarias Animales/patología , Aloinjertos/efectos de los fármacos , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Curcumina/química , Modelos Animales de Enfermedad , Femenino , Humanos , Concentración 50 Inhibidora , Metaloproteinasas de la Matriz/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Pruebas de Toxicidad
13.
Mol Carcinog ; 58(2): 219-233, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30298948

RESUMEN

Efficient DNA repair is indispensable for maintaining genomic integrity in humans. Cancer associated deletions and mutations are mainly due to misrepaired DNA double-strand breaks (DSBs). Classical nonhomologous end joining (c-NHEJ) and homologous recombination (HR) are two major DSB repair pathways in humans. An error prone, alternative NHEJ pathway that utilizes microhomology was also reported in cancer cells and to a lesser extent in normal cells. In the present study, we evaluated the efficiency of various DSB repair pathways in the most common lymphoma, the diffuse large B cell lymphoma (DLBCL). Here we show that DNA repair through c-NHEJ pathway is limited in SUDHL8, a cell line derived from a DLBCL patient. Unlike c-NHEJ, microhomology mediated end joining (MMEJ) was predominant at physiological temperature. Consistent with the observation, expression level of repair proteins such as LIGASE I, LIGASE III, PARP1, CtIP, and MRE11 was higher in DLBCL cells when compared to c-NHEJ proteins. Further, inhibition of LIGASE I or MRE11, led to reduction in the efficiency of MMEJ in DLBCL cells. Besides, HR-mediated DSB repair occurring through gene conversion was observed. Thus, our results reveal the predominance of MMEJ over c-NHEJ in repairing DSBs in DLBCL cells, while error-free repair through HR was also evident.


Asunto(s)
Reparación del ADN , Redes Reguladoras de Genes , Linfoma de Células B Grandes Difuso/metabolismo , Regulación hacia Arriba , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Endodesoxirribonucleasas , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma de Células B Grandes Difuso/genética , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
14.
BMC Complement Altern Med ; 19(1): 273, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31638975

RESUMEN

BACKGROUND: Curcumin is known for its multitude of medicinal properties, including anti-cancer and migrastatic activity. Efforts to overcome poor bioavailability, stability, and side effects associated with the higher dose of curcumin has led to the development of newer derivatives of curcumin. Thus, the focus of this study is to screen novel curcumin derivatives, namely ST03 and ST08, which have not been reported before, for their cytotoxicity and migrastatic property on cancer cells. METHODS: Anti-cancer activity of ST03 and ST08 was carried out using standard cytotoxicity assays viz., LDH, MTT, and Trypan blue on both solid and liquid cancer types. Flow cytometric assays and western blotting was used to investigate the cell death mechanisms. Transwell migration assay was carried out to check for migrastatic properties of the compounds. RESULTS: Both the compounds, ST03 and ST08, showed ~ 100 fold higher potency on liquid and solid tumour cell lines compared to its parent compound curcumin. They induced cytotoxicity by activating the intrinsic pathway of apoptosis in the breast (MDA-MB-231) and ovarian cancer cell lines (PA-1) bearing metastatic and stem cell properties, respectively. Moreover, ST08 also showed inhibition on breast cancer cell migration by inhibiting MMP1 (matrix metalloproteinase 1). CONCLUSION: Both ST03 and ST08 exhibit anti-cancer activity at nanomolar concentration. They induce cell death by activating the intrinsic pathway of apoptosis. Also, they inhibit migration of the cancer cells by inhibiting MMP1 in breast cancer cells.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/fisiopatología , Movimiento Celular/efectos de los fármacos , Curcumina/química , Curcumina/farmacología , Neoplasias Ováricas/fisiopatología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Metaloproteinasa 1 de la Matriz/metabolismo , Estructura Molecular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo
15.
Mol Carcinog ; 56(2): 550-566, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27312791

RESUMEN

The terminal step of ligation of single and/or double-strand breaks during physiological processes such as DNA replication, repair and recombination requires participation of DNA ligases in all mammals. DNA Ligase I has been well characterised to play vital roles during these processes. Considering the indispensable role of DNA Ligase I, a therapeutic strategy to impede proliferation of cancer cells is by using specific small molecule inhibitors against it. In the present study, we have designed and chemically synthesised putative DNA Ligase I inhibitors. Based on various biochemical and biophysical screening approaches, we identify two prospective DNA Ligase I inhibitors, SCR17 and SCR21. Both the inhibitors blocked ligation of nicks on DNA in a concentration-dependent manner, when catalysed by cell-free extracts or purified Ligase I. Docking studies in conjunction with biolayer interferometry and gel shift assays revealed that both SCR17 and SCR21 can bind to Ligase I, particularly to the DNA Binding Domain of Ligase I with KD values in nanomolar range. The inhibitors did not show significant affinity towards DNA Ligase III and DNA Ligase IV. Further, addition of Ligase I could restore the joining, when the inhibitors were treated with testicular cell-free extracts. Ex vivo studies using multiple assays showed that even though cell death was limited in the presence of inhibitors in cancer cells, their proliferation was compromised. Hence, we identify two promising DNA Ligase I inhibitors, which can be used in biochemical and cellular assays, and could be further modified and optimised to target cancer cells. © 2016 Wiley Periodicals, Inc.


Asunto(s)
ADN Ligasa (ATP)/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN Ligasa (ATP)/química , ADN Ligasa (ATP)/metabolismo , Replicación del ADN/efectos de los fármacos , Diseño de Fármacos , Células HEK293 , Humanos , Masculino , Simulación del Acoplamiento Molecular , Ratas , Ratas Wistar
16.
Mol Cell Biochem ; 426(1-2): 149-160, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27882441

RESUMEN

Pyrazole moiety represents an important category of heterocyclic compound in pharmaceutical and medicinal chemistry. The novel 1-aryl-3, 5-bis (het) aryl pyrazole derivatives were synthesized with complementary regioselectivity. The chemical structures were confirmed by IR, 1H NMR, 13C NMR, and mass spectral analysis. The chemical entities were screened in various cancer cell lines to assess their cell viability activity. Results showed that the compound 3-(1-(4-bromophenyl)-5-phenyl-1H-pyrazol-3-yl) pyridine (5d) possessed maximum cytotoxic effect against breast cancer and leukemic cells. The cytotoxicity was confirmed by live-dead cell assay and cell cycle analysis. Mitochondrial membrane potential, Annexin V-FITC staining, DNA fragmentation, Hoechst staining, and western blot assays revealed the ability of compound 5d to induce cell death by activating apoptosis in cancer cells. Thus, the present study demonstrates that compound 5d could be an attractive chemical entity for the development of small molecule inhibitors for treatment of leukemia and breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Citotoxinas , Leucemia/tratamiento farmacológico , Pirazoles , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Muerte Celular/efectos de los fármacos , Citotoxinas/síntesis química , Citotoxinas/química , Citotoxinas/farmacología , Femenino , Humanos , Células K562 , Leucemia/metabolismo , Células MCF-7 , Espectrometría de Masas , Ratones , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/farmacología
17.
Mol Carcinog ; 52(6): 413-25, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22213363

RESUMEN

Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Sustancias Intercalantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Quinolinas/uso terapéutico , Tiofenos/uso terapéutico , Animales , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , ADN/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Humanos , Sustancias Intercalantes/farmacología , Leucemia/tratamiento farmacológico , Leucemia/genética , Leucemia/metabolismo , Leucemia/patología , Ratones , Ratones Endogámicos BALB C , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Quinolinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología
18.
Nucleic Acids Res ; 39(3): 936-48, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20880994

RESUMEN

The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3'-UTR of the BCL2 gene and are mainly clustered in the major breakpoint region (MBR). Recently, we found that the BCL2 MBR has a non-B DNA character in genomic DNA. Here, we show that single-stranded DNA modeled from the template strand of the BCL2 MBR, forms secondary structures that migrate faster on native PAGE in the presence of potassium, due to the formation of intramolecular G-quadruplexes. Circular dichroism shows evidence for a parallel orientation for G-quadruplex structures in the template strand of the BCL2 MBR. Mutagenesis and the DMS modification assay confirm the presence of three guanine tetrads in the structure. 1H nuclear magnetic resonance studies further confirm the formation of an intramolecular G-quadruplex and a representative model has been built based on all of the experimental evidence. We also provide data consistent with the possible formation of a G-quadruplex structure at the BCL2 MBR within mammalian cells. In summary, these important features could contribute to the single-stranded character at the BCL2 MBR, thereby contributing to chromosomal fragility.


Asunto(s)
Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 14 , Cromosomas Humanos Par 18 , G-Cuádruplex , Genes bcl-2 , Linfoma Folicular/genética , Translocación Genética , Humanos , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Ésteres del Ácido Sulfúrico , Polimerasa Taq , Transcripción Genética
19.
Biomolecules ; 13(11)2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-38002311

RESUMEN

Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Células Endoteliales/metabolismo , Médula Ósea/metabolismo , Células del Estroma/metabolismo , Citocinas/metabolismo , Microambiente Tumoral
20.
PeerJ ; 11: e16033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810779

RESUMEN

Genetic heterogeneity influences the prognosis and therapy of breast cancer. The cause of disease progression varies and can be addressed individually. To identify the mutations and their impact on disease progression at an individual level, we sequenced exome and transcriptome from matched normal-tumor samples. We utilised DawnRank to prioritise driver genes and identify specific mutations in Indian patients. Mutations in the C3 and HLA genes were identified as drivers of disease progression, indicating the involvement of the innate immune system. We performed immune profiling on 16 matched normal/tumor samples using CIBERSORTx. We identified CD8+ve T cells, M2 macrophages, and neutrophils to be enriched in luminal A and T cells CD4+naïve, natural killer (NK) cells activated, T follicular helper (Tfh) cells, dendritic cells activated, and neutrophils in triple-negative breast cancer (TNBC) subtypes. Weighted gene co-expression network analysis (WGCNA) revealed activation of T cell-mediated response in ER positive samples and Interleukin and Interferons in ER negative samples. WGCNA analysis also identified unique pathways for each individual, suggesting that rare mutations/expression signatures can be used to design personalised treatment.


Asunto(s)
Exoma , Neoplasias de la Mama Triple Negativas , Humanos , Exoma/genética , Neoplasias de la Mama Triple Negativas/genética , Progresión de la Enfermedad , ARN Mensajero/genética , Inmunidad Innata/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA