Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 132(14): 1507-1518, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30104217

RESUMEN

Adult T-cell leukemia lymphoma (ATLL) is a rare T cell neoplasm that is endemic in Japanese, Caribbean, and Latin American populations. Most North American ATLL patients are of Caribbean descent and are characterized by high rates of chemo-refractory disease and worse prognosis compared with Japanese ATLL. To determine genomic differences between these 2 cohorts, we performed targeted exon sequencing on 30 North American ATLL patients and compared the results with the Japanese ATLL cases. Although the frequency of TP53 mutations was comparable, the mutation frequency in epigenetic and histone modifying genes (57%) was significantly higher, whereas the mutation frequency in JAK/STAT and T-cell receptor/NF-κB pathway genes was significantly lower. The most common type of epigenetic mutation is that affecting EP300 (20%). As a category, epigenetic mutations were associated with adverse prognosis. Dissimilarities with the Japanese cases were also revealed by RNA sequencing analysis of 9 primary patient samples. ATLL samples with a mutated EP300 gene have decreased total and acetyl p53 protein and a transcriptional signature reminiscent of p53-mutated cancers. Most importantly, decitabine has highly selective single-agent activity in the EP300-mutated ATLL samples, suggesting that decitabine treatment induces a synthetic lethal phenotype in EP300-mutated ATLL cells. In conclusion, we demonstrate that North American ATLL has a distinct genomic landscape that is characterized by frequent epigenetic mutations that are targetable preclinically with DNA methyltransferase inhibitors.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Decitabina/uso terapéutico , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Leucemia-Linfoma de Células T del Adulto/genética , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/efectos de los fármacos , Proteína p300 Asociada a E1A/genética , Epigénesis Genética , Femenino , Humanos , Japón/epidemiología , Leucemia-Linfoma de Células T del Adulto/diagnóstico , Leucemia-Linfoma de Células T del Adulto/epidemiología , Masculino , Persona de Mediana Edad , Tasa de Mutación , Pronóstico , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Estados Unidos/epidemiología
2.
Mol Cancer ; 14: 185, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26537004

RESUMEN

BACKGROUND: BCL-xL is an anti-apoptotic BCL-2 family protein that inhibits apoptosis and is overexpressed in many cancers. We have reported that acquired resistance to the BCL-2 inhibitor ABT-199 (venetoclax) is associated with increased BCL-xL expression. Yet, how BCL-xL mediates chemoresistance in hematopoietic malignancies is not clear. This finding may help in design of new strategies for therapeutic intervention to overcome acquired chemoresistance mediated by BCL-xL. RESULTS: We now show that the increased BCL-xL expression was inversely correlated with that of miR-377 in ABT-199-resistant cells. This finding was also extended to a panel of B-cell lymphoid lines and primary chronic lymphocytic leukemia (CLL) cells. miR-377 suppressed BCL-xL expression by recognizing two binding sites in the BCL-xL 3'-UTR. Mutation of these two miR-377 consensus-binding sites completely abolished its regulatory effect. Expression of a miR-377 mimic downregulated BCL-xL protein expression and significantly increased apoptotic cell death. Expression of a miR-377 inhibitor restored BCL-xL protein expression and limited cell death caused by the hypomethylating agent 5-azacytidine. Thus, miR-377-dependent BCL-xL regulation drives acquired therapeutic resistance to ABT-199. We further show that CLL patients who received a diverse array of chemotherapy regimens also had significantly higher BCL-xL and lower miR377 expression, indicating that exposure to chemotherapy might trigger transcriptional silencing of miR-377, which results in high levels of BCL-xL. Importantly, CLL patients with high BCL-xL/low miR-377 expression had an advanced tumor stage. Moreover, the high BCL-xL expression correlated with short treatment-free survival in 76 CLL patients. miR-377 is located at 14q32 in the DLK1-DIO3 region, which encodes the largest tumor suppressor miRNA cluster in humans. Examination of five additional 14q32 miRNAs revealed that the majority were significantly down-regulated in most CLL patients as well as in ABT-199-resistant cell lines. Remarkably, four of these miRNAs had significantly decreased expression in chemotherapy-treated CLL patients as compared to those untreated. These findings indicate a reduced expression of multiple miRNAs that may reflect a global silencing of this miRNA cluster in therapy-resistant lymphoid cells. CONCLUSIONS: These findings reveal a novel mechanism by which down-regulation of miR-377 increases BCL-xL expression, promoting chemotherapy resistance in B-cell lymphoid malignancies.


Asunto(s)
Linfocitos B/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , MicroARNs/metabolismo , Proteína bcl-X/metabolismo , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular , Resistencia a Antineoplásicos/genética , Humanos , Leucemia Linfocítica Crónica de Células B/genética , MicroARNs/genética , Mutación , Sulfonamidas/farmacología , Proteína bcl-X/antagonistas & inhibidores
3.
Cell Rep ; 41(11): 111825, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516770

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) sustain lifelong hematopoiesis. Mutations of pre-mRNA splicing machinery, especially splicing factor 3b, subunit 1 (SF3B1), are early lesions found in malignancies arising from HSPC dysfunction. However, why splicing factor deficits contribute to HSPC defects remains incompletely understood. Using zebrafish, we show that HSPC formation in sf3b1 homozygous mutants is dependent on STAT3 activation. Clinically, mutations in SF3B1 are heterozygous; thus, we explored if targeting STAT3 could be a vulnerability in these cells. We show that SF3B1 heterozygosity confers heightened sensitivity to STAT3 inhibition in zebrafish, mouse, and human HSPCs. Cells carrying mutations in other splicing factors or treated with splicing modulators are also more sensitive to STAT3 inhibition. Mechanistically, we illustrate that STAT3 inhibition exacerbates aberrant splicing in SF3B1 mutant cells. Our findings reveal a conserved vulnerability of splicing factor mutant HSPCs that could allow for their selective targeting in hematologic malignancies.


Asunto(s)
Hematopoyesis , Pez Cebra , Ratones , Humanos , Animales , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Pez Cebra/metabolismo , Hematopoyesis/genética , Empalme del ARN/genética , Células Madre Hematopoyéticas/metabolismo , Mutación/genética , Fosfoproteínas/metabolismo , Factor de Transcripción STAT3/genética
4.
Cancer Cell ; 40(1): 3-5, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34838186
5.
Nat Med ; 28(3): 468-471, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35256801

RESUMEN

The terrorist attacks on the World Trade Center (WTC) created an unprecedented environmental exposure to aerosolized dust, gases and potential carcinogens. Clonal hematopoiesis (CH) is defined as the acquisition of somatic mutations in blood cells and is associated with smoking and exposure to genotoxic stimuli. Here we show that deep targeted sequencing of blood samples identified a significantly higher proportion of WTC-exposed first responders with CH (10%; 48 out of 481) when compared with non-WTC-exposed firefighters (6.7%; 17 out of 255; odds ratio, 3.14; 95% confidence interval, 1.64-6.03; P = 0.0006) after controlling for age, sex and race/ethnicity. The frequency of somatic mutations in WTC-exposed first responders showed an age-related increase and predominantly affected DNMT3A, TET2 and other CH-associated genes. Exposure of lymphoblastoid cells to WTC particulate matter led to dysregulation of DNA replication at common fragile sites in vitro. Moreover, mice treated with WTC particulate matter developed an increased burden of mutations in hematopoietic stem and progenitor cell compartments. In summary, the high burden of CH in WTC-exposed first responders provides a rationale for enhanced screening and preventative efforts in this population.


Asunto(s)
Desastres , Socorristas , Ataques Terroristas del 11 de Septiembre , Animales , Hematopoyesis Clonal , Polvo , Humanos , Ratones
6.
Elife ; 112022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36040792

RESUMEN

Background: Mutations in the SF3B1 splicing factor are commonly seen in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), yet the specific oncogenic pathways activated by mis-splicing have not been fully elucidated. Inflammatory immune pathways have been shown to play roles in the pathogenesis of MDS, though the exact mechanisms of their activation in splicing mutant cases are not well understood. Methods: RNA-seq data from SF3B1 mutant samples was analyzed and functional roles of interleukin-1 receptor-associated kinase 4 (IRAK4) isoforms were determined. Efficacy of IRAK4 inhibition was evaluated in preclinical models of MDS/AML. Results: RNA-seq splicing analysis of SF3B1 mutant MDS samples revealed retention of full-length exon 6 of IRAK4, a critical downstream mediator that links the Myddosome to inflammatory NF-kB activation. Exon 6 retention leads to a longer isoform, encoding a protein (IRAK4-long) that contains the entire death domain and kinase domain, leading to maximal activation of NF-kB. Cells with wild-type SF3B1 contain smaller IRAK4 isoforms that are targeted for proteasomal degradation. Expression of IRAK4-long in SF3B1 mutant cells induces TRAF6 activation leading to K63-linked ubiquitination of CDK2, associated with a block in hematopoietic differentiation. Inhibition of IRAK4 with CA-4948, leads to reduction in NF-kB activation, inflammatory cytokine production, enhanced myeloid differentiation in vitro and reduced leukemic growth in xenograft models. Conclusions: SF3B1 mutation leads to expression of a therapeutically targetable, longer, oncogenic IRAK4 isoform in AML/MDS models. Funding: This work was supported by Cincinnati Children's Hospital Research Foundation, Leukemia Lymphoma Society, and National Institute of Health (R35HL135787, RO1HL111103, RO1DK102759, RO1HL114582), Gabrielle's Angel Foundation for Cancer Research, and Edward P. Evans Foundation grants to DTS. AV is supported by Edward P. Evans Foundation, National Institute of Health (R01HL150832, R01HL139487, R01CA275007), Leukemia and Lymphoma Society, Curis and a gift from the Jane and Myles P. Dempsey family. AP and JB are supported by Blood Cancer UK (grants 13042 and 19004). GC is supported by a training grant from NYSTEM. We acknowledge support of this research from The Einstein Training Program in Stem Cell Research from the Empire State Stem Cell Fund through New York State Department of Health Contract C34874GG. MS is supported by a National Institute of Health Research Training and Career Development Grant (F31HL132420).


Genes contain blocks of code that tell cells how to make each part of a protein. Between these blocks are sections of linking DNA, which cells remove when they are preparing to use their genes. Scientists call this process 'splicing'. Cells can splice some genes in more than one way, allowing them to make different proteins from the same genetic code. Mutations that affect the splicing process can change the way cells make their proteins, leading to disease. For example, the myelodysplastic syndromes are a group of blood cancers often caused by mutations in splicing proteins, such as SF3B1. The disorder stops blood cells from maturing and causes abnormal inflammation. So far, the link between splicing, blood cell immaturity, inflammation and cancer is not clear. To find out more, Choudhary, Pellagatti et al. looked at the spliced genetic code from people with myelodysplastic syndromes. Mutations in the splicing protein SF3B1 changed the way cells spliced an important signalling molecule known as IRAK4. Affected cells cut out less genetic code and made a longer version of this signalling protein, named IRAK4-Long. This altered protein activated inflammation and stopped blood cells from maturing. Blocking IRAK4-Long reversed the effects. It also reduced tumour formation in mice carrying affected human cells. The molecule used to block IRAK4, CA-4948 ­ also known as Emavusertib ­ is currently being evaluated in clinical trials for myelodysplastic syndromes and other types of blood cancer. The work of Choudhary, Pellagatti et al. could help scientists to design genetic tests to predict which patients might benefit from this treatment.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Niño , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Síndromes Mielodisplásicos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Isoformas de Proteínas/metabolismo , Empalme del ARN
7.
Clin Cancer Res ; 25(18): 5638-5649, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308061

RESUMEN

PURPOSE: Myelodysplastic syndromes (MDS) with deletion of chromosome 7q/7 [-7/(del)7q MDS] is associated with worse outcomes and needs novel insights into pathogenesis. Reduced expression of signaling protein dedicator of cytokinesis 4 (DOCK4) in patients with -7/(del)7q MDS leads to a block in hematopoietic stem cell (HSC) differentiation. Identification of targetable signaling networks downstream of DOCK4 will provide means to restore hematopoietic differentiation in MDS.Experimental Design: We utilized phosphoproteomics approaches to identify signaling proteins perturbed as a result of reduced expression of DOCK4 in human HSCs and tested their functional significance in primary model systems. RESULTS: We demonstrate that reduced levels of DOCK4 lead to increased global tyrosine phosphorylation of proteins in primary human HSCs. LYN kinase and phosphatases INPP5D (SHIP1) and PTPN6 (SHP1) displayed greatest levels of tyrosine phosphorylation when DOCK4 expression levels were reduced using DOCK4-specific siRNA. Our data also found that increased phosphorylation of SHIP1 and SHP1 phosphatases were due to LYN kinase targeting these phosphatases as substrates. Increased migration and impediment of HSC differentiation were consequences of these signaling alterations. Pharmacologic inhibition of SHP1 reversed these functional aberrations in HSCs expressing low DOCK4 levels. In addition, differentiation block seen in DOCK4 haplo-insufficient [-7/(del)7q] MDS was rescued by inhibition of SHP1 phosphatase. CONCLUSIONS: LYN kinase and phosphatases SHP1 and SHIP1 are perturbed when DOCK4 expression levels are low. Inhibition of SHP1 promotes erythroid differentiation in healthy HSCs and in -7/(del)7q MDS samples with low DOCK4 expression. Inhibitors of LYN, SHP1 and SHIP1 also abrogated increased migratory properties in HSCs expressing reduced levels of DOCK4.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Células Madre Hematopoyéticas/metabolismo , Mutación con Pérdida de Función , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Transducción de Señal/efectos de los fármacos , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Biológicos , Síndromes Mielodisplásicos/patología , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Fosforilación , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo
8.
Nat Cell Biol ; 21(5): 640-650, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31011167

RESUMEN

Spliceosome mutations are common in myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML), but the oncogenic changes due to these mutations have not been identified. Here a global analysis of exon usage in AML samples revealed distinct molecular subsets containing alternative spliced isoforms of inflammatory and immune genes. Interleukin-1 receptor-associated kinase 4 (IRAK4) was the dominant alternatively spliced isoform in MDS and AML and is characterized by a longer isoform that retains exon 4, which encodes IRAK4-long (IRAK4-L), a protein that assembles with the myddosome, results in maximal activation of nuclear factor kappa-light-chain-enhancer of B cells (NF-κB) and is essential for leukaemic cell function. Expression of IRAK4-L is mediated by mutant U2 small nuclear RNA auxiliary factor 1 (U2AF1) and is associated with oncogenic signalling in MDS and AML. Inhibition of IRAK4-L abrogates leukaemic growth, particularly in AML cells with higher expression of the IRAK4-L isoform. Collectively, mutations in U2AF1 induce expression of therapeutically targetable 'active' IRAK4 isoforms and provide a genetic link to activation of chronic innate immune signalling in MDS and AML.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Factor de Empalme U2AF/genética , Empalme Alternativo/genética , Exones/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad Innata/genética , Inflamación/genética , Inflamación/patología , Leucemia Mieloide Aguda/patología , Masculino , Mutación/genética , Síndromes Mielodisplásicos/patología , Isoformas de Proteínas/genética , Transducción de Señal , Empalmosomas/genética
9.
Blood Adv ; 3(23): 3962-3967, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31805192

RESUMEN

Therapy-related acute myeloid leukemia and myelodysplastic syndromes (t-AML/t-MDS) are secondary hematologic malignancies associated with poor prognosis, warranting insights into their predisposing conditions and cells of origin. We identified patients with myeloma who developed t-AML/t-MDS and analyzed their stem and progenitor cells collected years before the onset of secondary disease. We demonstrate that aberrant stem cells with high CD123 expression can be detected long before the onset of overt leukemia. Rigorous sorting, followed by targeted sequencing, resulted in ultradeep functional depth of sequencing and revealed preexisting mutant hematopoietic stem cell (HSC) clones, mainly harboring TP53 mutations, that became the dominant population at the time of leukemic presentation. Taken together, these data show that HSCs can act as reservoirs for leukemia-initiating cells many years before the onset of myeloid leukemia.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/etiología , Mieloma Múltiple/complicaciones , Neoplasias Primarias Secundarias/etiología , Humanos , Leucemia Mieloide Aguda/patología , Mieloma Múltiple/patología , Mutación , Neoplasias Primarias Secundarias/patología
10.
Elife ; 82019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31663852

RESUMEN

Even though pancreatic ductal adenocarcinoma (PDAC) is associated with fibrotic stroma, the molecular pathways regulating the formation of cancer associated fibroblasts (CAFs) are not well elucidated. An epigenomic analysis of patient-derived and de-novo generated CAFs demonstrated widespread loss of cytosine methylation that was associated with overexpression of various inflammatory transcripts including CXCR4. Co-culture of neoplastic cells with CAFs led to increased invasiveness that was abrogated by inhibition of CXCR4. Metabolite tracing revealed that lactate produced by neoplastic cells leads to increased production of alpha-ketoglutarate (aKG) within mesenchymal stem cells (MSCs). In turn, aKG mediated activation of the demethylase TET enzyme led to decreased cytosine methylation and increased hydroxymethylation during de novo differentiation of MSCs to CAF. Co-injection of neoplastic cells with TET-deficient MSCs inhibited tumor growth in vivo. Thus, in PDAC, a tumor-mediated lactate flux is associated with widespread epigenomic reprogramming that is seen during CAF formation.


Asunto(s)
Fibroblastos Asociados al Cáncer/patología , Reprogramación Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Ácido Láctico/farmacología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Reprogramación Celular/genética , Metilación de ADN/efectos de los fármacos , Humanos , Ácidos Cetoglutáricos/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Invasividad Neoplásica , Receptores CXCR4/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Transcriptoma/genética , Neoplasias Pancreáticas
11.
Cancer Cell ; 32(4): 490-505.e10, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-29017059

RESUMEN

The BCL-2 family protein BAX is a central mediator of apoptosis. Overexpression of anti-apoptotic BCL-2 proteins contributes to tumor development and resistance to therapy by suppressing BAX and its activators. We report the discovery of BTSA1, a pharmacologically optimized BAX activator that binds with high affinity and specificity to the N-terminal activation site and induces conformational changes to BAX leading to BAX-mediated apoptosis. BTSA1-induced BAX activation effectively promotes apoptosis in leukemia cell lines and patient samples while sparing healthy cells. BAX expression levels and cytosolic conformation regulate sensitivity to BTSA1. BTSA1 potently suppressed human acute myeloid leukemia (AML) xenografts and increased host survival without toxicity. This study provides proof-of-concept for direct BAX activation as a treatment strategy in AML.


Asunto(s)
Apoptosis/efectos de los fármacos , Hidrazonas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Tiazoles/farmacología , Proteína X Asociada a bcl-2/fisiología , Animales , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Conformación Proteica , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/química
12.
Cancer Res ; 77(18): 4846-4857, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28684528

RESUMEN

The bone marrow microenvironment influences malignant hematopoiesis, but how it promotes leukemogenesis has not been elucidated. In addition, the role of the bone marrow stroma in regulating clinical responses to DNA methyltransferase inhibitors (DNMTi) is also poorly understood. In this study, we conducted a DNA methylome analysis of bone marrow-derived stromal cells from myelodysplastic syndrome (MDS) patients and observed widespread aberrant cytosine hypermethylation occurring preferentially outside CpG islands. Stroma derived from 5-azacytidine-treated patients lacked aberrant methylation and DNMTi treatment of primary MDS stroma enhanced its ability to support erythroid differentiation. An integrative expression analysis revealed that the WNT pathway antagonist FRZB was aberrantly hypermethylated and underexpressed in MDS stroma. This result was confirmed in an independent set of sorted, primary MDS-derived mesenchymal cells. We documented a WNT/ß-catenin activation signature in CD34+ cells from advanced cases of MDS, where it associated with adverse prognosis. Constitutive activation of ß-catenin in hematopoietic cells yielded lethal myeloid disease in a NUP98-HOXD13 mouse model of MDS, confirming its role in disease progression. Our results define novel epigenetic changes in the bone marrow microenvironment, which lead to ß-catenin activation and disease progression of MDS. Cancer Res; 77(18); 4846-57. ©2017 AACR.


Asunto(s)
Epigénesis Genética , Células Madre Mesenquimatosas/patología , Síndromes Mielodisplásicos/patología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Islas de CpG , Metilación de ADN , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Proteínas de Fusión Oncogénica/genética , Células Tumorales Cultivadas
13.
Methods Mol Biol ; 1219: 1-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25308257

RESUMEN

Apoptosis can be measured by number of methods by taking advantage of the morphological, biochemical, and molecular changes undergoing in a cell during this process. The best recognized biochemical hallmark of both early and late stages of apoptosis is the activation of cysteine proteases (caspases). Detection of active caspase-3 in cells and tissues is an important method for apoptosis induced by a wide variety of apoptotic signals. Most common assays for examining caspase-3 activation include immunostaining, immunoblotting for active caspase-3, colorimetric assays using fluorochrome substrates, as well as employing the fluorescein-labeled CaspaTag pan-caspase in situ detection kit.


Asunto(s)
Apoptosis , Caspasa 3/análisis , Caspasa 3/metabolismo , Citometría de Flujo/métodos , Immunoblotting/métodos , Inmunohistoquímica/métodos , Animales , Daño del ADN , Activación Enzimática , Fluoresceína , Colorantes Fluorescentes , Humanos , Ratones
14.
Oncotarget ; 6(19): 16912-25, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26219338

RESUMEN

Cyclin E/Cdk2 kinase activity is frequently deregulated in human cancers, resulting in impaired apoptosis. Here, we show that cyclin E/Cdk2 phosphorylates and stabilizes the pro-survival Bcl-2 family protein Mcl-1, a key cell death resistance determinant to the small molecule Bcl-2 family inhibitors ABT-199 and ABT-737, mimetics of the Bcl-2 homology domain 3 (BH3). Cyclin E levels were elevated and there was increased association of cyclin E/Cdk2 with Mcl-1 in ABT-737-resistant compared to parental cells. Cyclin E depletion in various human tumor cell-lines and cyclin E-/- mouse embryo fibroblasts showed decreased levels of Mcl-1 protein, with no change in Mcl-1 mRNA levels. In the absence of cyclin E, Mcl-1 ubiquitination was enhanced, leading to decreased protein stability. Studies with Mcl-1 phosphorylation mutants show that cyclin E/Cdk2-dependent phosphorylation of Mcl-1 residues on its PEST domain resulted in increased Mcl-1 stability (Thr92, and Thr163) and Bim binding (Ser64). Cyclin E knock-down restored ABT-737 sensitivity to acquired and inherently resistant Mcl-1-dependent tumor cells. CDK inhibition by dinaciclib resulted in Bim release from Mcl-1 in ABT-737-resistant cells. Dinaciclib in combination with ABT-737 and ABT-199 resulted in robust synergistic cell death in leukemic cells and primary chronic lymphocytic leukemia patient samples. Collectively, our findings identify a novel mechanism of cyclin E-mediated Mcl-1 regulation that provides a rationale for clinical use of Bcl-2 family and Cdk inhibitors for Mcl-1-dependent tumors.


Asunto(s)
Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Animales , Compuestos de Bifenilo/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Nitrofenoles/farmacología , Fragmentos de Péptidos , Fosforilación , Piperazinas/farmacología , Estabilidad Proteica , Proteínas Proto-Oncogénicas , Reacción en Cadena en Tiempo Real de la Polimerasa , Sulfonamidas/farmacología
15.
Mol Cancer Ther ; 14(8): 1896-906, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26026052

RESUMEN

Exposure to genotoxic agents, such as ionizing radiation (IR), produces DNA damage, leading to DNA double-strand breaks (DSB); IR toxicity is augmented when the DNA repair is impaired. We reported that radiosensitization by a PARP inhibitor (PARPi) was highly prominent in prostate cancer cells expressing the TMPRSS2-ERG gene fusion protein. Here, we show that TMPRSS2-ERG blocks nonhomologous end-joining (NHEJ) DNA repair by inhibiting DNA-PKcs. VCaP cells, which harbor TMPRSS2-ERG and PC3 cells that stably express it, displayed γH2AX and 53BP1 foci constitutively, indicating persistent DNA damage that was absent if TMPRSS2-ERG was depleted by siRNA in VCaP cells. The extent of DNA damage was enhanced and associated with TMPRSS2-ERG's ability to inhibit DNA-PKcs function, as indicated by its own phosphorylation (Thr2609, Ser2056) and that of its substrate, Ser1778-53BP1. DNA-PKcs deficiency caused by TMPRSS2-ERG destabilized critical NHEJ components on chromatin. Thus, XRCC4 was not recruited to chromatin, with retention of other NHEJ core factors being reduced. DNA-PKcs autophosphorylation was restored to the level of parental cells when TMPRSS2-ERG was depleted by siRNA. Following IR, TMPRSS2-ERG-expressing PC3 cells had elevated Rad51 foci and homologous recombination (HR) activity, indicating that HR compensated for defective NHEJ in these cells, hence addressing why TMPRSS2-ERG alone did not lead to radiosensitization. However, the presence of TMPRSS2-ERG, by inhibiting NHEJ DNA repair, enhanced PARPi-mediated radiosensitization. IR in combination with PARPi resulted in enhanced DNA damage in TMPRSS2-ERG-expressing cells. Therefore, by inhibiting NHEJ, TMPRSS2-ERG provides a synthetic lethal interaction with PARPi in prostate cancer patients expressing TMPRSS2-ERG.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Proteínas de Fusión Oncogénica/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Proteínas Adaptadoras Transductoras de Señales , Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/efectos de la radiación , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cromatina/metabolismo , Daño del ADN , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
16.
PLoS One ; 8(4): e60408, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23565244

RESUMEN

Exposure to genotoxic agents, such as irradiation produces DNA damage, the toxicity of which is augmented when the DNA repair is impaired. Poly (ADP-ribose) polymerase (PARP) inhibitors were found to be "synthetic lethal" in cells deficient in BRCA1 and BRCA2 that impair homologous recombination. However, since many tumors, including prostate cancer (PCa) rarely have on such mutations, there is considerable interest in finding alternative determinants of PARP inhibitor sensitivity. We evaluated the effectiveness of radiation in combination with the PARP inhibitor, rucaparib in PCa cells. The combination index for clonogenic survival following radiation and rucaparib treatments revealed synergistic interactions in a panel of PCa cell lines, being strongest for LNCaP and VCaP cells that express ETS gene fusion proteins. These findings correlated with synergistic interactions for senescence activation, as indicated by ß--galactosidase staining. Absence of PTEN and presence of ETS gene fusion thus facilitated activation of senescence, which contributed to decreased clonogenic survival. Increased radiosensitivity in the presence of rucaparib was associated with persistent DNA breaks, as determined by χ-H2AX, p53BP1, and Rad51 foci. VCaP cells, which harbor the TMPRSS2-ERG gene fusion and PC3 cells that stably express a similar construct (fusion III) showed enhanced sensitivity towards rucaparib, which, in turn, increased the radiation response to a similar extent as the DNA-PKcs inhibitor NU7441. Rucaparib radiosensitized PCa cells, with a clear benefit of low dose-rate radiation (LDR) administered over a longer period of time that caused enhanced DNA damage. LDR mimicking brachytherapy, which is used successfully in the clinic, was most effective when combined with rucaparib by inducing persistent DNA damage and senescence, leading to decreased clonogenic survival. This combination was most effective in the presence of the TMPRSS2-ERG and in the absence of PTEN, indicating clinical potential for brachytherapy in patients with intermediate and high risk PCa.


Asunto(s)
Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Próstata/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Senescencia Celular/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Cromonas/farmacología , Técnica del Anticuerpo Fluorescente , Humanos , Indoles/farmacología , Masculino , Morfolinas/farmacología , Fosfohidrolasa PTEN/genética , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Recombinantes de Fusión , Serina Endopeptidasas , Transactivadores , Regulador Transcripcional ERG
17.
Cancer Res ; 72(12): 3069-79, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22525702

RESUMEN

ABT-737 is a small molecule Bcl-2 homology (BH)-3 domain mimetic that binds to the Bcl-2 family proteins Bcl-2 and Bcl-xL and is currently under investigation in the clinic. In this study, we investigated potential mechanisms of resistance to ABT-737 in leukemia cell lines. Compared with parental cells, cells that have developed acquired resistance to ABT-737 showed increased expression of Mcl-1 in addition to posttranslational modifications that facilitated both Mcl-1 stabilization and its interaction with the BH3-only protein Bim. To sensitize resistant cells, Mcl-1 was targeted by two pan-Bcl-2 family inhibitors, obatoclax and gossypol. Although gossypol was effective only in resistant cells, obatoclax induced cell death in both parental and ABT-737-resistant cells. NOXA levels were increased substantially by treatment with gossypol and its expression was critical for the gossypol response. Mechanistically, the newly generated NOXA interacted with Mcl-1 and displaced Bim from the Mcl-1/Bim complex, freeing Bim to trigger the mitochondrial apoptotic pathway. Together, our findings indicate that NOXA and Mcl-1 are critical determinants for gossypol-mediated cell death in ABT-737-resistant cells. These data therefore reveal novel insight into mechanisms of acquired resistance to ABT-737.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bifenilo/farmacología , Resistencia a Antineoplásicos , Leucemia de Células B/tratamiento farmacológico , Nitrofenoles/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Línea Celular Tumoral , Gosipol/farmacología , Humanos , Indoles , Leucemia de Células B/patología , Proteínas de la Membrana/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Fosforilación , Piperazinas/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/genética , Pirroles/farmacología , Interferencia de ARN , ARN Interferente Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA