Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(32): 18984-18990, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32723816

RESUMEN

The lockdown response to coronavirus disease 2019 (COVID-19) has caused an unprecedented reduction in global economic and transport activity. We test the hypothesis that this has reduced tropospheric and ground-level air pollution concentrations, using satellite data and a network of >10,000 air quality stations. After accounting for the effects of meteorological variability, we find declines in the population-weighted concentration of ground-level nitrogen dioxide (NO2: 60% with 95% CI 48 to 72%), and fine particulate matter (PM2.5: 31%; 95% CI: 17 to 45%), with marginal increases in ozone (O3: 4%; 95% CI: -2 to 10%) in 34 countries during lockdown dates up until 15 May. Except for ozone, satellite measurements of the troposphere indicate much smaller reductions, highlighting the spatial variability of pollutant anomalies attributable to complex NOx chemistry and long-distance transport of fine particulate matter with a diameter less than 2.5 µm (PM2.5). By leveraging Google and Apple mobility data, we find empirical evidence for a link between global vehicle transportation declines and the reduction of ambient NO2 exposure. While the state of global lockdown is not sustainable, these findings allude to the potential for mitigating public health risk by reducing "business as usual" air pollutant emissions from economic activities. Explore trends here: https://nina.earthengine.app/view/lockdown-pollution.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Cuarentena/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Atmósfera/química , COVID-19 , Infecciones por Coronavirus/prevención & control , Humanos , Dióxido de Nitrógeno/análisis , Ozono/análisis , Pandemias/prevención & control , Material Particulado/análisis , Neumonía Viral/prevención & control , Cuarentena/economía , Emisiones de Vehículos/análisis
2.
Proc Natl Acad Sci U S A ; 116(22): 10711-10716, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30988190

RESUMEN

Exposures to ambient and household fine-particulate matter (PM2.5) together are among the largest single causes of premature mortality in India according to the Global Burden of Disease Studies (GBD). Several recent investigations have estimated that household emissions are the largest contributor to ambient PM2.5 exposure in the country. Using satellite-derived district-level PM2.5 exposure and an Eulerian photochemical dispersion model CAMx (Comprehensive Air Quality Model with Extensions), we estimate the benefit in terms of population exposure of mitigating household sources--biomass for cooking, space- and water-heating, and kerosene for lighting. Complete mitigation of emissions from only these household sources would reduce India-wide, population-weighted average annual ambient PM2.5 exposure by 17.5, 11.9, and 1.3%, respectively. Using GBD methods, this translates into reductions in Indian premature mortality of 6.6, 5.5, and 0.6%. If PM2.5 emissions from all household sources are completely mitigated, 103 (of 597) additional districts (187 million people) would meet the Indian annual air-quality standard (40 µg m-3) compared with baseline (2015) when 246 districts (398 million people) met the standard. At 38 µg m-3, after complete mitigation of household sources, compared with 55.1 µg m-3 at baseline, the mean annual national population-based concentration would meet the standard, although highly polluted areas, such as Delhi, would remain out of attainment. Our results support expansion of programs designed to promote clean household fuels and rural electrification to achieve improved air quality at regional scales, which also has substantial additional health benefits from directly reducing household air pollution exposures.

3.
Environ Res ; 192: 110403, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152273

RESUMEN

The lockdown response to COVID-19 has resulted in an unprecedented reduction in global economic activity and associated air pollutant levels, especially from a decline in land transportation. We utilized a network of >10,000 air quality stations distributed over 34 countries during lockdown dates up until 15 May 2020 to obtain lockdown related anomalies for nitrogen dioxide, ozone and particulate matter smaller than 2.5 µm in diameter (PM2.5). Pollutant anomalies were related to short-term health outcomes using empirical exposure-response functions. We estimate that there were a net total of 49,900 (11,000 to 90,000; 95% confidence interval) excess deaths and 89,000 (64,700 to 107,000) pediatric asthma emergency room visits avoided during lockdowns. In China and India alone, the PM2.5-related avoided excess mortality was 19,600 (15,300 to 24,000) and 30,500 (5700 to 68,000), respectively. While the state of COVID-19 imposed lockdown is not sustainable, these findings illustrate the potential health benefits gained by reducing "business as usual" air pollutant emissions from economic activities primarily through finding alternative transportation solutions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Niño , China/epidemiología , Salud Global , Humanos , India , Pandemias , Material Particulado/análisis , SARS-CoV-2
4.
Environ Health ; 18(1): 62, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31288809

RESUMEN

BACKGROUND: Children in India are exposed to high levels of ambient fine particulate matter (PM2.5). However, population-level evidence of associations with adverse health outcomes from within the country is limited. The aim of our study is to estimate the association of early-life exposure to ambient PM2.5 with child health outcomes (height-for-age) in India. METHODS: We linked nationally-representative anthropometric data from India's 2015-2016 Demographic and Health Survey (n = 218,152 children under five across 640 districts of India) with satellite-based PM2.5 exposure (concentration) data. We then applied fixed effects regression to assess the association between early-life ambient PM2.5 and subsequent height-for-age, analyzing whether deviations in air pollution from the seasonal average for a particular place are associated with deviations in child height from the average for that season in that place, controlling for trends over time, temperature, and birth, mother, and household characteristics. We also explored the timing of exposure and potential non-linearities in the concentration-response relationship. RESULTS: Children in the sample were exposed to an average of 55 µ g/m3 of PM2.5 in their birth month. After controlling for potential confounders, a 100 µg/m3 increase in PM2.5 in the month of birth was associated with a 0.05 [0.01-0.09] standard deviation reduction in child height. For an average 5 year old girl, this represents a height deficit of 0.24 [0.05-0.43] cm. We also found that exposure to PM2.5 in the last trimester in utero and in the first few months of life are significantly (p < 0.05) associated with child height deficits. We did not observe a decreasing marginal risk at high levels of exposure. CONCLUSIONS: India experiences some of the worst air pollution in the world. To our knowledge, this is the first study to estimate the association of early-life exposure to ambient PM2.5 on child height-for-age at the range of ambient pollution exposures observed in India. Because average exposure to ambient PM2.5 is high in India, where child height-for-age is a critical challenge in human development, our results highlight ambient air pollution as a public health policy priority.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Estatura/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/efectos adversos , Preescolar , Femenino , Humanos , India , Masculino
5.
Environ Sci Technol ; 52(15): 8756-8763, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29953226

RESUMEN

Lack of a consistent PM10 (particulate matter smaller than 10 µm) database at high spatial resolution hinders in assessing the environmental impact of PM10 in India. Here we propose an alternate approach to estimate the PM10 database. Aerosol extinction coefficients at the surface are calculated from midvisible aerosol optical depth from MERRA-2 reanalysis data using characteristics vertical profiles from CALIOP and then are converted to PM10 mass using aerosol property information and microphysical data. The retrieved PM10 are bias-corrected and evaluated ( R2 = 0.85) against coincident ground-based data maintained under the Central Pollution Control Board network. PM10 exposure exceeds Indian annual air quality standard in 72.3% districts. Transition in PM10 exposure from the monsoon (Jun-Sep) to postmonsoon season (Oct-Nov) translates to 1-2% higher all-cause mortality risk over the polluted Indo-Gangetic Basin (IGB). Mortality risk increases in the central to eastern IGB and central India and reduces in Delhi national capital region in the winter (Dec-Feb) relative to the postmonsoon season. Mortality risk decreases by 0.5-1.8% in most parts of India in the premonsoon season (Mar-May). Our results quantify the vulnerability in terms of seasonal transition in all-cause mortality risks due to PM10 exposure at district level for the first time in India.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , India , Material Particulado , Estaciones del Año
6.
Indian Pediatr ; 61(4): 375-379, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38597103

RESUMEN

Recent research has underscored the diverse ways in which air pollution detrimentally affects child health in India. Notably, India shoulders one of the highest burdens of mortality of children under five years of age globally due to exposure to air pollution. Distinct mitigation strategies are vital to reduce air pollution exposure and its resultant health burdens among children in India when compared to strategies applicable in the global West. This necessity arises due to the substantial influence of residential combustion of solid fuels, and considerable disparities prevalent among India's population. Addressing these unique challenges requires widespread awareness, community engagement, and sustainable policies. As India embarked on a mission to reduce air pollution, showcasing health benefits linked to interventions is crucial. Augmenting access to health data is equally essential to bolster evidence-based policymaking aimed at reducing the child health burden stemming from air pollution in India.


Asunto(s)
Contaminación del Aire , Salud Infantil , Niño , Humanos , Preescolar , Contaminación del Aire/efectos adversos , Contaminación del Aire/prevención & control , India/epidemiología
7.
Sci Total Environ ; 922: 171314, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38423313

RESUMEN

Chronic exposure to ambient PM2.5 is the largest environmental health risk in Europe. We used a chemical transport model and recent exposure response functions to simulate ambient PM2.5, contribution from fires and related health impacts over Europe from 1990 to 2019. Our estimation indicates that the excess death burden from exposure to ambient PM2.5 declined across Europe at a rate of 10,000 deaths per year, from 0.57 million (95 % confidence intervals: 0.44-0.75 million) in 1990 to 0.28 million (0.19-0.42 million) in the specified period. Among these excess deaths, approximately 99 % were among adults, while only around 1 % occurred among children. Our findings reveal a steady increase in fire mortality fractions (excess deaths from fires per 1000 deaths from ambient PM2.5) from 2 in 1990 to 13 in 2019. Notably, countries in Eastern Europe exhibited significantly higher fire mortality fractions and experienced more pronounced increases compared to those in Western and Central Europe. We performed sensitivity analyses by considering fire PM2.5 to be more toxic as compared to other sources, as indicated by recent studies. By considering fire PM2.5 to be more toxic than other PM2.5 sources results in an increased relative contribution of fires to excess deaths, reaching 2.5-13 % in 2019. Our results indicate the requirement of larger mitigation and adaptation efforts and more sustainable forest management policies to avert the rising health burden from fires.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Incendios , Adulto , Niño , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Europa (Continente) , Europa Oriental , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis
8.
Environ Int ; 175: 107972, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37192572

RESUMEN

Most research on the air pollution-related health effects of decarbonization has focused on adults. We assess the potential health benefits that could be achieved in children and young people in a global sample of 16 cities through global decarbonization actions. We modelled annual average concentrations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) at 1x1 km resolution in the cities using a general circulation/atmospheric chemistry model assuming removal of all global combustion-related emissions from land transport, industries, domestic energy use and power generation. We modelled the impact on childhood asthma incidence and adverse birth outcomes (low birthweight, pre-term births) using published exposure-response relationships. Removal of combustion emissions was estimated to decrease annual average PM2.5 by between 2.9 µg/m3 (8.4%) in Freetown and 45.4 µg/m3 (63.7%) in Dhaka. For NO2, the range was from 0.3 ppb (7.9%) in Freetown to 18.8 ppb (92.3%) in Mexico City. Estimated reductions in asthma incidence ranged from close to zero in Freetown, Tamale and Harare to 149 cases per 100,000 population in Los Angeles. For pre-term birth, modelled impacts ranged from a reduction of 135 per 100,000 births in Dar es Salaam to 2,818 per 100,000 births in Bhubaneswar and, for low birthweight, from 75 per 100,000 births in Dar es Salaam to 2,951 per 100,000 births in Dhaka. The large variations chiefly reflect differences in the magnitudes of air pollution reductions and estimated underlying disease rates. Across the 16 cities, the reduction in childhood asthma incidence represents more than one-fifth of the current burden, and an almost 10% reduction in pre-term and low birthweight births. Decarbonization actions that remove combustion-related emissions contributing to ambient PM2.5 and NO2 would likely lead to substantial but geographically-varied reductions in childhood asthma and adverse birth outcomes, though there are uncertainties in causality and the precision of estimates.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Niño , Adulto , Humanos , Adolescente , Contaminantes Atmosféricos/análisis , Ciudades , Peso al Nacer , Dióxido de Nitrógeno/análisis , Salud Infantil , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Tanzanía , Bangladesh , Zimbabwe , Contaminación del Aire/análisis , Asma/etiología , Material Particulado/análisis
9.
Thromb Res ; 225: 116-125, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990953

RESUMEN

BACKGROUND: A growing body of evidence suggests that air pollution exposure is associated with an increased risk for cardiovascular diseases. Data regarding the impact of long-term air pollution exposure on ischemic stroke mortality are sparse. METHODS: The German nationwide inpatient sample was used to analyse all cases of hospitalized patients with ischemic stroke in Germany 2015-2019, which were stratified according to their residency. Data of the German Federal Environmental Agency regarding average values of air pollutants were assessed from 2015 to 2019 at district-level. Data were combined and the impact of different air pollution parameters on in-hospital case-fatality was analyzed. RESULTS: Overall, 1,505,496 hospitalizations of patients with ischemic stroke (47.7% females; 67.4 % ≥70 years old) were counted in Germany 2015-2019, of whom 8.2 % died during hospitalization. When comparing patients with residency in federal districts with high vs. low long-term air pollution, enhanced levels of benzene (OR 1.082 [95%CI 1.034-1.132],P = 0.001), ozone (O3, OR 1.123 [95%CI 1.070-1.178],P < 0.001), nitric oxide (NO, OR 1.076 [95%CI 1.027-1.127],P = 0.002) and PM2.5 fine particulate matter concentrations (OR 1.126 [95%CI 1.074-1.180],P < 0.001) were significantly associated with increased case-fatality independent from age, sex, cardiovascular risk-factors, comorbidities, and revascularization treatments. Conversely, enhanced carbon monoxide, nitrogen dioxide, PM10, and sulphur dioxide (SO2) concentrations were not significantly associated with stroke mortality. However, SO2-concentrations were significantly associated with stroke-case-fatality rate of >8 % independent of residence area-type and area use (OR 1.518 [95%CI 1.012-2.278],P = 0.044). CONCLUSION: Elevated long-term air pollution levels in residential areas in Germany, notably of benzene, O3, NO, SO2, and PM2.5, were associated with increased stroke mortality of patients. RESEARCH IN CONTEXT: Evidence before this study: Besides typical, established risk factors, increasing evidence suggests that air pollution is an important and growing risk factor for stroke events, estimated to be responsible for approximately 14 % of all stroke-associated deaths. However, real-world data regarding the impact of long-term exposure to air pollution on stroke mortality are sparse. Added value of this study: The present study demonstrates that the long-term exposure to the air pollutants benzene, O3, NO, SO2 and PM2.5 are independently associated with increased case-fatality of hospitalized patients with ischemic stroke in Germany. Implications of all the available evidence: The results of our study support the urgent need to reduce the exposure to air pollution by tightening emission controls to reduce the stroke burden and stroke mortality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Accidente Cerebrovascular Isquémico , Femenino , Humanos , Anciano , Masculino , Benceno/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Óxido Nítrico , Hospitales
10.
Environ Int ; 173: 107835, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857905

RESUMEN

Direct exposure to household fine particulate air pollution (HAP) associated with inefficient combustion of fuels (wood, charcoal, coal, crop residues, kerosene, etc.) for cooking, space-heating, and lighting is estimated to result in 2.3 (1.6-3.1) million premature yearly deaths globally. HAP emitted indoors escapes outdoors and is a leading source of outdoor ambient fine particulate air pollution (AAP) in low- and middle-income countries, often being a larger contributor than well-recognized sources including road transport, industry, coal-fired power plants, brick kilns, and construction dust. We review published scientific studies that model the contribution of HAP to AAP at global and major sub-regional scales. We describe strengths and limitations of the current state of knowledge on HAP's contribution to AAP and the related impact on public health and provide recommendations to improve these estimates. We find that HAP is a dominant source of ambient fine particulate matter (PM2.5) globally - regardless of variations in model types, configurations, and emission inventories used - that contributes approximately 20 % of total global PM2.5 exposure. There are large regional variations: in South Asia, HAP contributes âˆ¼ 30 % of ambient PM2.5, while in high-income North America the fraction is âˆ¼ 7 %. The median estimate indicates that the household contribution to ambient air pollution results in a substantial premature mortality burden globally of about 0.77(0.54-1) million excess deaths, in addition to the 2.3 (1.6-3.1) million deaths from direct HAP exposure. Coordinated global action is required to avert this burden.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/toxicidad , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Mortalidad Prematura , Polvo , Carbón Mineral/efectos adversos
11.
Sci Rep ; 13(1): 16690, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794063

RESUMEN

Due to the lack of timely data on socioeconomic factors (SES), little research has evaluated if socially disadvantaged populations are disproportionately exposed to higher PM2.5 concentrations in India. We fill this gap by creating a rich dataset of SES parameters for 28,081 clusters (villages in rural India and census-blocks in urban India) from the National Family and Health Survey (NFHS-4) using a precision-weighted methodology that accounts for survey-design. We then evaluated associations between total, anthropogenic and source-specific PM2.5 exposures and SES variables using fully-adjusted multilevel models. We observed that SES factors such as caste, religion, poverty, education, and access to various household amenities are important risk factors for PM2.5 exposures. For example, we noted that a unit standard deviation increase in the cluster-prevalence of Scheduled Caste and Other Backward Class households was significantly associated with an increase in total-PM2.5 levels corresponding to 0.127 µg/m3 (95% CI 0.062 µg/m3, 0.192 µg/m3) and 0.199 µg/m3 (95% CI 0.116 µg/m3, 0.283 µg/m3, respectively. We noted substantial differences when evaluating such associations in urban/rural locations, and when considering source-specific PM2.5 exposures, pointing to the need for the conceptualization of a nuanced EJ framework for India that can account for these empirical differences. We also evaluated emerging axes of inequality in India, by reporting associations between recent changes in PM2.5 levels and different SES parameters.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Material Particulado/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Justicia Ambiental , Contaminación del Aire/análisis , India , Contaminantes Atmosféricos/análisis
12.
Lancet Public Health ; 8(7): e546-e558, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37393093

RESUMEN

BACKGROUND: Ambient air pollution is a major risk to health and wellbeing in European cities. We aimed to estimate spatial and sector-specific contributions of emissions to ambient air pollution and evaluate the effects of source-specific reductions in pollutants on mortality in European cities to support targeted source-specific actions to address air pollution and promote population health. METHODS: We conducted a health impact assessment of data from 2015 for 857 European cities to estimate source contributions to annual PM2·5 and NO2 concentrations using the Screening for High Emission Reduction Potentials for Air quality tool. We evaluated contributions from transport, industry, energy, residential, agriculture, shipping, and aviation, other, natural, and external sources. For each city and sector, three spatial levels were considered: contributions from the same city, the rest of the country, and transboundary. Mortality effects were estimated for adult populations (ie, ≥20 years) following standard comparative risk assessment methods to calculate the annual mortality preventable on spatial and sector-specific reductions in PM2·5 and NO2. FINDINGS: We observed strong variability in spatial and sectoral contributions among European cities. For PM2·5, the main contributors to mortality were the residential (mean contribution of 22·7% [SD 10·2]) and agricultural (18·0% [7·7]) sectors, followed by industry (13·8% [6·0]), transport (13·5% [5·8]), energy (10·0% [6·4]), and shipping (5·5% [5·7]). For NO2, the main contributor to mortality was transport (48·5% [SD 15·2]), with additional contributions from industry (15·0% [10·8]), energy (14·7% [12·9]), residential (10·3% [5·0]), and shipping (9·7% [12·7]). The mean city contribution to its own air pollution mortality was 13·5% (SD 9·9) for PM2·5 and 34·4% (19·6) for NO2, and contribution increased among cities of largest area (22·3% [12·2] for PM2·5 and 52·2% [19·4] for NO2) and among European capitals (29·9% [12·5] for PM2·5 and 62·7% [14·7] for NO2). INTERPRETATION: We estimated source-specific air pollution health effects at the city level. Our results show strong variability, emphasising the need for local policies and coordinated actions that consider city-level specificities in source contributions. FUNDING: Spanish Ministry of Science and Innovation, State Research Agency, Generalitat de Catalunya, Centro de Investigación Biomédica en red Epidemiología y Salud Pública, and Urban Burden of Disease Estimation for Policy Making 2023-2026 Horizon Europe project.


Asunto(s)
Contaminación del Aire , Evaluación del Impacto en la Salud , Adulto , Humanos , Ciudades , Dióxido de Nitrógeno , Contaminación del Aire/efectos adversos , Material Particulado
13.
Environ Int ; 159: 107020, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34894485

RESUMEN

Chronic exposure to fine particulate matter (PM2.5) poses a major global health risk, commonly assessed by assuming equivalent toxicity for different PM2.5 constituents. We used a data-informed global atmospheric model and recent exposure-response functions to calculate the health burden of ambient PM2.5 from ten source categories. We estimate 4.23 (95% confidence interval 3.0-6.14) million excess deaths annually from the exposure to ambient PM2.5. We distinguished contributions and major sources of black carbon (BC), primary organic aerosols (POA) and anthropogenic secondary organic aerosols (aSOA). These components make up to ∼20% of the total PM2.5 in South and East Asia and East Africa. We find that domestic energy use by the burning of solid biofuels is the largest contributor to ambient BC, POA and aSOA globally. Epidemiological and toxicological studies indicate that these compounds may be relatively more hazardous than other PM2.5 compounds such as soluble salts, related to their high potential to inflict oxidative stress. We performed sensitivity analyses by considering these species to be more harmful compared to other compounds in PM2.5, as suggested by their oxidative potential using a range of potential relative risks. These analyses show that domestic energy use emerges as the leading cause of excess mortality attributable to ambient PM2.5, notably in Asia and Africa. We acknowledge the uncertainties inherent in our assumed enhanced toxicity of the anthropogenic organic and BC aerosol components, which suggest the need to better understand the mechanisms and magnitude of the associated health risks and the consequences for regulatory policies. However our assessment of the importance of emissions from domestic energy use as a cause of premature mortality is robust to a range of assumptions about the magnitude of the excess risk.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/toxicidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Carbono , Monitoreo del Ambiente , Salud Global , Material Particulado/análisis , Material Particulado/toxicidad
14.
Environ Epidemiol ; 5(1): e125, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33778358

RESUMEN

Anemia is highly prevalent in India, especially in children. Exposure to ambient fine particulate matter (PM2.5) is a potential risk factor for anemia via. systemic inflammation. Using health data from the National Family and Health Survey 2015-2016, we examined the association between ambient PM2.5 exposure and anemia in children under five across India through district-level ecological and individual-level analyses. METHODS: The ecological analysis assessed average hemoglobin levels and anemia prevalence (hemoglobin < 11 g/dL considered anemic) by district using multiple linear regression models. The individual-level analysis assessed average individual hemoglobin level and anemia status (yes/no) using generalized linear mixed models to account for clustering by district. Ambient PM2.5 exposure data were derived from the Multiangle Imaging SpectroRadiometer (MISR) level 2 aerosol optical depth (AOD) data and averaged from birth date to date of interview. RESULTS: The district-level ecological analysis found that, for every 10 µg m-3 increase in ambient PM2.5 exposure, average anemia prevalence increased by 1.90% (95% CI = 1.43, 2.36) and average hemoglobin decreased by 0.07 g/dL (95% CI = 0.09, 0.05). At the individual level, for every 10 µg m-3 increase in ambient PM2.5 exposure, average hemoglobin decreased by 0.14 g/dL (95% CI = 0.12, 0.16). The odds ratio associated with a 10-µg m-3 increase in ambient PM2.5 exposure was 1.09 (95% CI = 1.06, 1.11). There was evidence of effect modification by wealth index, maternal anemia status, and child BMI. CONCLUSION: Our results suggest that ambient PM2.5 exposure could be linked to anemia in Indian children, although additional research on the underlying biologic mechanisms is needed. Future studies on this association should specifically consider interactions with dietary iron deficiency, maternal anemia status, and child BMI.Keywords: Anemia; Children; Ambient PM2.5 exposure; India; Association.

15.
Antioxidants (Basel) ; 10(11)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34829658

RESUMEN

Both exposure to higher levels of polluted air and physical inactivity are crucial risk factors for the development and progression of major noncommunicable diseases and, in particular, of cardiovascular disease. In this context, the World Health Organization estimated 4.2 and 3.2 million global deaths per year in response to ambient air pollution and insufficient physical activity, respectively. While regular physical activity is well known to improve general health, it may also increase the uptake and deposit of air pollutants in the lungs/airways and circulation, due to increased breathing frequency and minute ventilation, thus increasing the risk of cardiovascular disease. Thus, determining the tradeoff between the health benefits of physical activity and the potential harmful effects of increased exposure to air pollution during physical activity has important public health consequences. In the present comprehensive review, we analyzed evidence from human and animal studies on the combined effects of physical activity and air pollution on cardiovascular and other health outcomes. We further report on pathophysiological mechanisms underlying air pollution exposure, as well as the protective effects of physical activity with a focus on oxidative stress and inflammation. Lastly, we provide mitigation strategies and practical recommendations for physical activity in areas with polluted air.

16.
Artículo en Inglés | MEDLINE | ID: mdl-34886291

RESUMEN

Mobility restrictions during the COVID-19 pandemic ostensibly prevented the public from transmitting the disease in public places, but they also hampered outdoor recreation, despite the importance of blue-green spaces (e.g., parks and natural areas) for physical and mental health. We assess whether restrictions on human movement, particularly in blue-green spaces, affected the transmission of COVID-19. Our assessment uses a spatially resolved dataset of COVID-19 case numbers for 848 administrative units across 153 countries during the first year of the pandemic (February 2020 to February 2021). We measure mobility in blue-green spaces with planetary-scale aggregate and anonymized mobility flows derived from mobile phone tracking data. We then use machine learning forecast models and linear mixed-effects models to explore predictors of COVID-19 growth rates. After controlling for a number of environmental factors, we find no evidence that increased visits to blue-green space increase COVID-19 transmission. By contrast, increases in the total mobility and relaxation of other non-pharmaceutical interventions such as containment and closure policies predict greater transmission. Ultraviolet radiation stands out as the strongest environmental mitigant of COVID-19 spread, while temperature, humidity, wind speed, and ambient air pollution have little to no effect. Taken together, our analyses produce little evidence to support public health policies that restrict citizens from outdoor mobility in blue-green spaces, which corroborates experimental studies showing low risk of outdoor COVID-19 transmission. However, we acknowledge and discuss some of the challenges of big data approaches to ecological regression analyses such as this, and outline promising directions and opportunities for future research.


Asunto(s)
COVID-19 , Humanos , Pandemias , Parques Recreativos , SARS-CoV-2 , Rayos Ultravioleta
17.
Sci Rep ; 10(1): 14796, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908156

RESUMEN

To curb the staggering health burden attributed to air pollution, the sustainable solution for India would be to reduce emissions in future. Here we project ambient fine particulate matter (PM2.5) exposure in India for the year 2030 under two contrasting air pollution emission pathways for two different climate scenarios based on Representative Concentration Pathways (RCP4.5 and RCP8.5). All-India average PM2.5 is expected to increase from 41.4 ± 26.5 µg m-3 in 2010 to 61.1 ± 40.8 and 58.2 ± 37.5 µg m-3 in 2030 under RCP8.5 and RCP4.5 scenarios, respectively if India follows the current legislation (baseline) emission pathway. In contrast, ambient PM2.5 in 2030 would be 40.2 ± 27.5 (for RCP8.5) and 39.2 ± 25.4 (for RCP4.5) µg m-3 following the short-lived climate pollutant (SLCP) mitigation emission pathway. We find that the lower PM2.5 in the mitigation pathway (34.2% and 32.6%, respectively for RCP8.5 and RCP4.5 relative to the baseline emission pathway) would come at a cost of 0.3-0.5 °C additional warming due to the direct impact of aerosols. The premature mortality burden attributable to ambient PM2.5 exposure is expected to rise from 2010 to 2030, but 381,790 (5-95% confidence interval, CI 275,620-514,600) deaths can be averted following the mitigation emission pathway relative to the baseline emission pathway. Therefore, we conclude that given the expected large health benefit, the mitigation emission pathway is a reasonable tradeoff for India despite the meteorological response. However, India needs to act more aggressively as the World Health Organization (WHO) annual air quality guideline (10 µg m-3) would remain far off.

18.
Front Public Health ; 8: 569669, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014985

RESUMEN

The COVID-19 outbreak was first declared an international public health, and it was later deemed a pandemic. In most countries, the COVID-19 incidence curve rises sharply over a short period of time, suggesting a transition from a disease-free (or low-burden disease) equilibrium state to a sustained infected (or high-burden disease) state. Such a transition is often known to exhibit characteristics of "critical slowing down." Critical slowing down can be, in general, successfully detected using many statistical measures, such as variance, lag-1 autocorrelation, density ratio, and skewness. Here, we report an empirical test of this phenomena on the COVID-19 datasets of nine countries, including India, China, and the United States. For most of the datasets, increases in variance and autocorrelation predict the onset of a critical transition. Our analysis suggests two key features in predicting the COVID-19 incidence curve for a specific country: (a) the timing of strict social distancing and/or lockdown interventions implemented and (b) the fraction of a nation's population being affected by COVID-19 at that time. Furthermore, using satellite data of nitrogen dioxide as an indicator of lockdown efficacy, we found that countries where lockdown was implemented early and firmly have been successful in reducing COVID-19 spread. These results are essential for designing effective strategies to control the spread/resurgence of infectious pandemics.


Asunto(s)
COVID-19 , Pandemias , China/epidemiología , Control de Enfermedades Transmisibles , Humanos , India/epidemiología , SARS-CoV-2 , Estados Unidos/epidemiología
19.
Nat Commun ; 9(1): 318, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358713

RESUMEN

Premature mortality from current ambient fine particulate (PM2.5) exposure in India is large, but the trend under climate change is unclear. Here we estimate ambient PM2.5 exposure up to 2100 by applying the relative changes in PM2.5 from baseline period (2001-2005) derived from Coupled Model Inter-comparison Project 5 (CMIP5) models to the satellite-derived baseline PM2.5. We then project the mortality burden using socioeconomic and demographic projections in the Shared Socioeconomic Pathway (SSP) scenarios. Ambient PM2.5 exposure is expected to peak in 2030 under the RCP4.5 and in 2040 under the RCP8.5 scenario. Premature mortality burden is expected to be 2.4-4 and 28.5-38.8% higher under RCP8.5 scenario relative to the RCP4.5 scenario in 2031-2040 and 2091-2100, respectively. Improved health conditions due to economic growth are expected to compensate for the impact of changes in population and age distribution, leading to a reduction in per capita health burden from PM2.5 for all scenarios except the combination of RCP8.5 exposure and SSP3.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Mortalidad Prematura/tendencias , Material Particulado/análisis , Material Particulado/toxicidad , Cambio Climático , Predicción , Humanos , India , Tiempo (Meteorología)
20.
Environ Pollut ; 242(Pt B): 1817-1826, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30078683

RESUMEN

Exposure to fine particulate matter (PM2.5) is one of the leading risk factors for the mortality and morbidity burden in India. Health benefit expected from mitigation of emissions from individual sectors is the key policy information to address this issue. Here we quantify the relative shares of four major year-round anthropogenic sources to ambient PM2.5 in India using a chemical transport model and estimate premature deaths that could have been avoided due to complete mitigation of emissions from these sources at state level. Population-weighted all-India averaged (±1σ) annual ambient PM2.5 exposures due to residential, transport, industrial and energy sectors in 2010 are estimated to be 26.2 ±â€¯12.5, 3.8 ±â€¯4.3, 5.5 ±â€¯2.7 and 2.2 ±â€¯2.3 µg m-3, respectively. Complete mitigation of emissions from the transport, industrial and energy sectors combined would avoid 92,380 (95% uncertainty interval (UI), 40,918-140,741) premature deaths annually, primarily at the urban hotspots. For the residential sector, this would result in avoiding 378,295 (95% UI, 175,002-575,293) premature deaths due to a reduction in ambient PM2.5 exposure in addition to the benefit of avoiding all premature deaths from household exposure. Bihar and Goa are expected to have the largest (289) and smallest (48) premature mortality burden per 100,000 population due to anthropogenic PM2.5 exposure. From policy perspective, controlling residential sources should be prioritized in view of the effectiveness of implementing mitigation measures and the expected larger health benefit at a regional scale. However, additional mitigation measures are advised at the urban hotspots to curb emissions from the other sectors to get maximum possible health benefit.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Material Particulado/análisis , Vivienda , Humanos , India , Mortalidad Prematura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA