Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Methods ; 20(4): 569-579, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36997816

RESUMEN

The ability to quantify structural changes of the endoplasmic reticulum (ER) is crucial for understanding the structure and function of this organelle. However, the rapid movement and complex topology of ER networks make this challenging. Here, we construct a state-of-the-art semantic segmentation method that we call ERnet for the automatic classification of sheet and tubular ER domains inside individual cells. Data are skeletonized and represented by connectivity graphs, enabling precise and efficient quantification of network connectivity. ERnet generates metrics on topology and integrity of ER structures and quantifies structural change in response to genetic or metabolic manipulation. We validate ERnet using data obtained by various ER-imaging methods from different cell types as well as ground truth images of synthetic ER structures. ERnet can be deployed in an automatic high-throughput and unbiased fashion and identifies subtle changes in ER phenotypes that may inform on disease progression and response to therapy.


Asunto(s)
Retículo Endoplásmico , Semántica , Retículo Endoplásmico/metabolismo
2.
Appl Opt ; 58(28): 7760-7765, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31674461

RESUMEN

Standard laser-based fire detection systems are often based on measuring the variation of optical signal amplitude. However, mechanical noise interference and loss from dust and steam can obscure the detection signal, resulting in faulty results or the inability to detect a potential fire. The presented fire detection technology will allow the detection of fire in harsh and dusty areas, which are prone to fires, where current systems show limited performance or are unable to operate. It is not the amount of light or its wavelength that is used for detecting fire, but how the refractive index randomly fluctuates due to heat convection from the fire. In practical terms, this means that light obstruction from ambient dust particles will not be a problem as long as a small fraction of the light is detected and that fires without visible flames can still be detected. The standalone laser system consists of a Linux-based Red Pitaya system, a cheap 650 nm laser diode, and a positive-intrinsic-negative photo-detector. Laser light propagates through the monitored area and reflects off a retroreflector generating a speckle pattern. Every 3 s, time traces and frequency noise spectra are measured, and eight descriptors are deduced to identify a potential fire. Both laboratory and factory acceptance tests have been performed with success.

3.
Biomed Opt Express ; 15(2): 1074-1088, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38404329

RESUMEN

Structured illumination can reject out-of-focus signal from a sample, enabling high-speed and high-contrast imaging over large areas with widefield detection optics. However, this optical sectioning technique is currently limited by image reconstruction artefacts and poor performance at low signal-to-noise ratios. We combine multicolour interferometric pattern generation with machine learning to achieve high-contrast, real-time reconstruction of image data that is robust to background noise and sample motion. We validate the method in silico and demonstrate imaging of diverse specimens, from fixed and live biological samples to synthetic biosystems, reconstructing data live at 11 Hz across a 44 × 44µm2 field of view, and demonstrate image acquisition speeds exceeding 154 Hz.

4.
Nat Commun ; 13(1): 7836, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543776

RESUMEN

Structured Illumination Microscopy, SIM, is one of the most powerful optical imaging methods available to visualize biological environments at subcellular resolution. Its limitations stem from a difficulty of imaging in multiple color channels at once, which reduces imaging speed. Furthermore, there is substantial experimental complexity in setting up SIM systems, preventing a widespread adoption. Here, we present Machine-learning Assisted, Interferometric Structured Illumination Microscopy, MAI-SIM, as an easy-to-implement method for live cell super-resolution imaging at high speed and in multiple colors. The instrument is based on an interferometer design in which illumination patterns are generated, rotated, and stepped in phase through movement of a single galvanometric mirror element. The design is robust, flexible, and works for all wavelengths. We complement the unique properties of the microscope with an open source machine-learning toolbox that permits real-time reconstructions to be performed, providing instant visualization of super-resolved images from live biological samples.


Asunto(s)
Iluminación , Aprendizaje Automático , Microscopía Fluorescente/métodos , Interferometría
5.
F1000Res ; 10: 258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504683

RESUMEN

Techniques for calcium imaging were first demonstrated in the mid-1970s, whilst tools to analyse these markers of cellular activity are still being developed and improved today. For image analysis, custom tools were developed within labs and until relatively recently, software packages were not widely available between researchers. We will discuss some of the most popular methods for calcium imaging analysis that are now widely available and describe why these protocols are so effective. We will also describe some of the newest innovations in the field that are likely to benefit researchers, particularly as calcium imaging is often an inherently low signal-to-noise method. Although calcium imaging analysis has seen recent advances, particularly following the rise of machine learning, we will end by highlighting the outstanding requirements and questions that hinder further progress and pose the question of how far we have come in the past sixty years and what can be expected for future development in the field.


Asunto(s)
Calcio , Procesamiento de Imagen Asistido por Computador , Diagnóstico por Imagen , Aprendizaje Automático
6.
Biomed Opt Express ; 12(5): 2720-2733, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34123499

RESUMEN

Structured illumination microscopy (SIM) has become an important technique for optical super-resolution imaging because it allows a doubling of image resolution at speeds compatible with live-cell imaging. However, the reconstruction of SIM images is often slow, prone to artefacts, and requires multiple parameter adjustments to reflect different hardware or experimental conditions. Here, we introduce a versatile reconstruction method, ML-SIM, which makes use of transfer learning to obtain a parameter-free model that generalises beyond the task of reconstructing data recorded by a specific imaging system for a specific sample type. We demonstrate the generality of the model and the high quality of the obtained reconstructions by application of ML-SIM on raw data obtained for multiple sample types acquired on distinct SIM microscopes. ML-SIM is an end-to-end deep residual neural network that is trained on an auxiliary domain consisting of simulated images, but is transferable to the target task of reconstructing experimental SIM images. By generating the training data to reflect challenging imaging conditions encountered in real systems, ML-SIM becomes robust to noise and irregularities in the illumination patterns of the raw SIM input frames. Since ML-SIM does not require the acquisition of experimental training data, the method can be efficiently adapted to any specific experimental SIM implementation. We compare the reconstruction quality enabled by ML-SIM with current state-of-the-art SIM reconstruction methods and demonstrate advantages in terms of generality and robustness to noise for both simulated and experimental inputs, thus making ML-SIM a useful alternative to traditional methods for challenging imaging conditions. Additionally, reconstruction of a SIM stack is accomplished in less than 200 ms on a modern graphics processing unit, enabling future applications for real-time imaging. Source code and ready-to-use software for the method are available at http://ML-SIM.github.io.

7.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33328230

RESUMEN

The endoplasmic reticulum (ER) comprises morphologically and functionally distinct domains: sheets and interconnected tubules. These domains undergo dynamic reshaping in response to changes in the cellular environment. However, the mechanisms behind this rapid remodeling are largely unknown. Here, we report that ER remodeling is actively driven by lysosomes, following lysosome repositioning in response to changes in nutritional status: The anchorage of lysosomes to ER growth tips is critical for ER tubule elongation and connection. We validate this causal link via the chemo- and optogenetically driven repositioning of lysosomes, which leads to both a redistribution of the ER tubules and a change of its global morphology. Therefore, lysosomes sense metabolic change in the cell and regulate ER tubule distribution accordingly. Dysfunction in this mechanism during axonal extension may lead to axonal growth defects. Our results demonstrate a critical role of lysosome-regulated ER dynamics and reshaping in nutrient responses and neuronal development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA