Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526660

RESUMEN

Human mitochondria contain their own genome, mitochondrial DNA, that is expressed in the mitochondrial matrix. This genome encodes 13 vital polypeptides that are components of the multisubunit complexes that couple oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane that houses these complexes comprises the inner boundary membrane that runs parallel to the outer membrane, infoldings that form the cristae membranes, and the cristae junctions that separate the two. It is in these cristae membranes that the OXPHOS complexes have been shown to reside in various species. The majority of the OXPHOS subunits are nuclear-encoded and must therefore be imported from the cytosol through the outer membrane at contact sites with the inner boundary membrane. As the mitochondrially encoded components are also integral members of these complexes, where does protein synthesis occur? As transcription, mRNA processing, maturation, and at least part of the mitoribosome assembly process occur at the nucleoid and the spatially juxtaposed mitochondrial RNA granules, is protein synthesis also performed at the RNA granules close to these entities, or does it occur distal to these sites? We have adapted a click chemistry-based method coupled with stimulated emission depletion nanoscopy to address these questions. We report that, in human cells in culture, within the limits of our methodology, the majority of mitochondrial protein synthesis is detected at the cristae membranes and is spatially separated from the sites of RNA processing and maturation.


Asunto(s)
Compartimento Celular , Imagenología Tridimensional , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas , Alquinos , Células Cultivadas , ADN Mitocondrial/genética , Glicina/análogos & derivados , Humanos , Cinética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , ARN Mitocondrial/metabolismo , Transducción de Señal
2.
Mol Genet Metab ; 140(3): 107657, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37523899

RESUMEN

FARS2 encodes the mitochondrial phenylalanyl-tRNA synthetase (mtPheRS), which is essential for charging mitochondrial (mt-) tRNAPhe with phenylalanine for use in intramitochondrial translation. Many biallelic, pathogenic FARS2 variants have been described previously, which are mostly associated with two distinct clinical phenotypes; an early onset epileptic mitochondrial encephalomyopathy or a later onset spastic paraplegia. In this study, we report on a patient who presented at 3 weeks of age with tachypnoea and poor feeding, which progressed to severe metabolic decompensation with lactic acidosis and seizure activity followed by death at 9 weeks of age. Rapid trio whole exome sequencing identified compound heterozygous FARS2 variants including a pathogenic exon 2 deletion on one allele and a rare missense variant (c.593G > T, p.(Arg198Leu)) on the other allele, necessitating further work to aid variant classification. Assessment of patient fibroblasts demonstrated severely decreased steady-state levels of mtPheRS, but no obvious defect in any components of the oxidative phosphorylation system. To investigate the potential pathogenicity of the missense variant, we determined its high-resolution crystal structure, demonstrating a local structural destabilization in the catalytic domain. Moreover, the R198L mutation reduced the thermal stability and impaired the enzymatic activity of mtPheRS due to a lower binding affinity for tRNAPhe and a slower turnover rate. Together these data confirm the pathogenicity of this FARS2 variant in causing early-onset mitochondrial epilepsy.


Asunto(s)
Epilepsia , Enfermedades Mitocondriales , Fenilalanina-ARNt Ligasa , Humanos , Lactante , Recién Nacido , Epilepsia/patología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mutación , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/química , ARN de Transferencia/genética , ARN de Transferencia de Fenilalanina/metabolismo
3.
J Cell Sci ; 133(1)2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896602

RESUMEN

In the canonical process of translation, newly completed proteins escape from the ribosome following cleavage of the ester bond that anchors the polypeptide to the P-site tRNA, after which the ribosome can be recycled to initiate a new round of translation. Not all protein synthesis runs to completion as various factors can impede the progression of ribosomes. Rescuing of stalled ribosomes in mammalian mitochondria, however, does not share the same mechanisms that many bacteria use. The classic method for rescuing bacterial ribosomes is trans-translation. The key components of this system are absent from mammalian mitochondria; however, four members of a translation termination factor family are present, with some evidence of homology to members of a bacterial back-up rescue system. To date, there is no definitive demonstration of any other member of this family functioning in mitoribosome rescue. Here, we provide an overview of the processes and key players of canonical translation termination in both bacteria and mammalian mitochondria, followed by a perspective of the bacterial systems used to rescue stalled ribosomes. We highlight any similarities or differences with the mitochondrial translation release factors, and suggest potential roles for these proteins in ribosome rescue in mammalian mitochondria.


Asunto(s)
Bacterias/metabolismo , Ribosomas Mitocondriales/metabolismo , Animales
4.
Hum Mol Genet ; 27(10): 1743-1753, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29518248

RESUMEN

LonP1 is a mitochondrial matrix protease whose selective substrate specificity is essential for maintaining mitochondrial homeostasis. Recessively inherited, pathogenic defects in LonP1 have been previously reported to underlie cerebral, ocular, dental, auricular and skeletal anomalies (CODAS) syndrome, a complex multisystemic and developmental disorder. Intriguingly, although classical mitochondrial disease presentations are well-known to exhibit marked clinical heterogeneity, the skeletal and dental features associated with CODAS syndrome are pathognomonic. We have applied whole exome sequencing to a patient with congenital lactic acidosis, muscle weakness, profound deficiencies in mitochondrial oxidative phosphorylation associated with loss of mtDNA copy number and MRI abnormalities consistent with Leigh syndrome, identifying biallelic variants in the LONP1 (NM_004793.3) gene; c.1693T > C predicting p.(Tyr565His) and c.2197G > A predicting p.(Glu733Lys); no evidence of the classical skeletal or dental defects observed in CODAS syndrome patients were noted in our patient. In vitro experiments confirmed the p.(Tyr565His) LonP1 mutant alone could not bind or degrade a substrate, consistent with the predicted function of Tyr565, whilst a second missense [p.(Glu733Lys)] variant had minimal effect. Mixtures of p.(Tyr565His) mutant and wild-type LonP1 retained partial protease activity but this was severely depleted when the p.(Tyr565His) mutant was mixed with the p.(Glu733Lys) mutant, data consistent with the compound heterozygosity detected in our patient. In summary, we conclude that pathogenic LONP1 variants can lead to a classical mitochondrial disease presentations associated with severe biochemical defects in oxidative phosphorylation in clinically relevant tissues.


Asunto(s)
Proteasas ATP-Dependientes/genética , Anomalías Craneofaciales/genética , Anomalías del Ojo/genética , Trastornos del Crecimiento/genética , Luxación Congénita de la Cadera/genética , Enfermedad de Leigh/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Osteocondrodisplasias/genética , Anomalías Dentarias/genética , Biopsia , Línea Celular , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/fisiopatología , Exoma/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/fisiopatología , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/fisiopatología , Luxación Congénita de la Cadera/metabolismo , Luxación Congénita de la Cadera/fisiopatología , Humanos , Lactante , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/fisiopatología , Masculino , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/fisiopatología , Músculo Esquelético/fisiopatología , Mutación , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/fisiopatología , Fosforilación Oxidativa , Anomalías Dentarias/metabolismo , Anomalías Dentarias/fisiopatología , Secuenciación del Exoma
5.
Am J Hum Genet ; 101(4): 525-538, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942965

RESUMEN

Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.


Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Transporte de Electrón/fisiología , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Adulto , Edad de Inicio , Anciano , Alelos , Secuencia de Aminoácidos , Animales , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Preescolar , Estudios de Cohortes , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Linaje , Conformación Proteica , Homología de Secuencia , Índice de Severidad de la Enfermedad , Adulto Joven
6.
Neuropediatrics ; 51(3): 178-184, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31779033

RESUMEN

BACKGROUND: A homozygous founder mutation in MTPAP/TENT6, encoding mitochondrial poly(A) polymerase (MTPAP), was first reported in six individuals of Old Order Amish descent demonstrating an early-onset, progressive spastic ataxia with optic atrophy and learning difficulties. MTPAP contributes to the regulation of mitochondrial gene expression through the polyadenylation of mitochondrially encoded mRNAs. Mitochondrial mRNAs with severely truncated poly(A) tails were observed in affected individuals, and mitochondrial protein expression was altered. OBJECTIVE: To determine the genetic basis of a perinatal encephalopathy associated with stereotyped neuroimaging and infantile death in three patients from two unrelated families. METHODS: Whole-exome sequencing was performed in two unrelated patients and the unaffected parents of one of these individuals. Variants and familial segregation were confirmed by Sanger sequencing. Polyadenylation of mitochondrial transcripts and de novo synthesis of mitochondrial proteins were assessed in patient's fibroblasts. RESULTS: Compound heterozygous p.Ile428Thr and p.Arg523Trp substitutions in MTPAP were recorded in two affected siblings from one family, and a homozygous p.Ile385Phe missense variant identified in a further affected child from a second sibship. Mitochondrial poly(A) tail analysis demonstrated shorter posttranscriptional additions to the mitochondrial transcripts, as well as an altered expression of mitochondrial proteins in the fibroblasts of the two siblings compared with healthy controls. CONCLUSION: Mutations in MTPAP likely cause an autosomal recessive perinatal encephalopathy with lethality in the first year of life.


Asunto(s)
Encefalopatías/genética , Encefalopatías/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Fibroblastos/metabolismo , Proteínas Mitocondriales/metabolismo , Femenino , Humanos , Lactante , Muerte del Lactante , Masculino , Proteínas Mitocondriales/genética , Linaje , Secuenciación del Exoma
7.
Biochem Soc Trans ; 47(5): 1429-1436, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31551356

RESUMEN

Mitochondria are ubiquitous organelles present in the cytoplasm of all nucleated eukaryotic cells. These organelles are described as arising from a common ancestor but a comparison of numerous aspects of mitochondria between different organisms provides remarkable examples of divergent evolution. In humans, these organelles are of dual genetic origin, comprising ∼1500 nuclear-encoded proteins and thirteen that are encoded by the mitochondrial genome. Of the various functions that these organelles perform, it is only oxidative phosphorylation, which provides ATP as a source of chemical energy, that is dependent on synthesis of these thirteen mitochondrially encoded proteins. A prerequisite for this process of translation are the mitoribosomes. The recent revolution in cryo-electron microscopy has generated high-resolution mitoribosome structures and has undoubtedly revealed some of the most distinctive molecular aspects of the mitoribosomes from different organisms. However, we still lack a complete understanding of the mechanistic aspects of this process and many of the factors involved in post-transcriptional gene expression in mitochondria. This review reflects on the current knowledge and illustrates some of the striking differences that have been identified between mitochondria from a range of organisms.


Asunto(s)
Evolución Biológica , Mitocondrias/metabolismo , Animales , Humanos , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(43): 12198-12201, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27729525

RESUMEN

The recent developments in cryo-EM have revolutionized our access to previously refractory structures. In particular, such studies of mammalian mitoribosomes have confirmed the absence of any 5S rRNA species and revealed the unexpected presence of a mitochondrially encoded tRNA (mt-tRNA) that usurps this position. Although the cryo-EM structures resolved the conundrum of whether mammalian mitoribosomes contain a 5S rRNA, they introduced a new dilemma: Why do human and porcine mitoribosomes integrate contrasting mt-tRNAs? Human mitoribosomes have been shown to integrate mt-tRNAVal compared with the porcine use of mt-tRNAPhe We have explored this observation further. Our studies examine whether a range of mt-tRNAs are used by different mammals, or whether the mt-tRNA selection is strictly limited to only these two species of the 22 tRNAs encoded by the mitochondrial genome (mtDNA); whether there is tissue-specific variation within a single organism; and what happens to the human mitoribosome when levels of the mt-tRNAVal are depleted. Our data demonstrate that only mt-tRNAVal or mt-tRNAPhe are found in the mitoribosomes of five different mammals, each mammal favors the same mt-tRNA in all tissue types, and strikingly, when steady-state levels of mt-tRNAVal are reduced, human mitoribosome biogenesis displays an adaptive response by switching to the incorporation of mt-tRNAPhe to generate translationally competent machinery.


Asunto(s)
Ribosomas Mitocondriales/química , Conformación de Ácido Nucleico , Biosíntesis de Proteínas/genética , ARN de Transferencia/ultraestructura , Animales , Microscopía por Crioelectrón , ADN Mitocondrial/química , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Humanos , Ribosomas Mitocondriales/ultraestructura , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico 5S/genética , ARN de Transferencia/genética , Porcinos
9.
Hum Mutat ; 39(4): 563-578, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29314548

RESUMEN

In recent years, an increasing number of mitochondrial disorders have been associated with mutations in mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), which are key enzymes of mitochondrial protein synthesis. Bi-allelic functional variants in VARS2, encoding the mitochondrial valyl tRNA-synthetase, were first reported in a patient with psychomotor delay and epilepsia partialis continua associated with an oxidative phosphorylation (OXPHOS) Complex I defect, before being described in a patient with a neonatal form of encephalocardiomyopathy. Here we provide a detailed genetic, clinical, and biochemical description of 13 patients, from nine unrelated families, harboring VARS2 mutations. All patients except one, who manifested with a less severe disease course, presented at birth exhibiting severe encephalomyopathy and cardiomyopathy. Features included hypotonia, psychomotor delay, seizures, feeding difficulty, abnormal cranial MRI, and elevated lactate. The biochemical phenotype comprised a combined Complex I and Complex IV OXPHOS defect in muscle, with patient fibroblasts displaying normal OXPHOS activity. Homology modeling supported the pathogenicity of VARS2 missense variants. The detailed description of this cohort further delineates our understanding of the clinical presentation associated with pathogenic VARS2 variants and we recommend that this gene should be considered in early-onset mitochondrial encephalomyopathies or encephalocardiomyopathies.


Asunto(s)
Antígenos HLA/genética , Encefalomiopatías Mitocondriales , ATPasas de Translocación de Protón Mitocondriales/deficiencia , Valina-ARNt Ligasa/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Encefalomiopatías Mitocondriales/fisiopatología , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mutación Missense , Fosforilación Oxidativa , Filogenia
10.
J Biol Chem ; 292(11): 4519-4532, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28082677

RESUMEN

Mitochondrial gene expression is a fundamental process that is largely dependent on nuclear-encoded proteins. Several steps of mitochondrial RNA processing and maturation, including RNA post-transcriptional modification, appear to be spatially organized into distinct foci, which we have previously termed mitochondrial RNA granules (MRGs). Although an increasing number of proteins have been localized to MRGs, a comprehensive analysis of the proteome of these structures is still lacking. Here, we have applied a microscopy-based approach that has allowed us to identify novel components of the MRG proteome. Among these, we have focused our attention on RPUSD4, an uncharacterized mitochondrial putative pseudouridine synthase. We show that RPUSD4 depletion leads to a severe reduction of the steady-state level of the 16S mitochondrial (mt) rRNA with defects in the biogenesis of the mitoribosome large subunit and consequently in mitochondrial translation. We report that RPUSD4 binds 16S mt-rRNA, mt-tRNAMet, and mt-tRNAPhe, and we demonstrate that it is responsible for pseudouridylation of the latter. These data provide new insights into the relevance of RNA pseudouridylation in mitochondrial gene expression.


Asunto(s)
Transferasas Intramoleculares/metabolismo , ARN/metabolismo , Línea Celular , Humanos , Transferasas Intramoleculares/análisis , Transferasas Intramoleculares/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Interferencia de ARN , ARN Mitocondrial , ARN Ribosómico 16S/metabolismo , ARN Interferente Pequeño/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo
11.
Biochem J ; 474(13): 2145-2158, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28512204

RESUMEN

Accurate assembly and maturation of human mitochondrial ribosomes is essential for synthesis of the 13 polypeptides encoded by the mitochondrial genome. This process requires the correct integration of 80 proteins, 1 mt (mitochondrial)-tRNA and 2 mt-rRNA species, the latter being post-transcriptionally modified at many sites. Here, we report that human ribosome-binding factor A (RBFA) is a mitochondrial RNA-binding protein that exerts crucial roles in mitoribosome biogenesis. Unlike its bacterial orthologue, RBFA associates mainly with helices 44 and 45 of the 12S rRNA in the mitoribosomal small subunit to promote dimethylation of two highly conserved consecutive adenines. Characterization of RBFA-depleted cells indicates that this dimethylation is not a prerequisite for assembly of the small ribosomal subunit. However, the RBFA-facilitated modification is necessary for completing mt-rRNA maturation and regulating association of the small and large subunits to form a functional monosome implicating RBFA in the quality control of mitoribosome formation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Proteínas de Escherichia coli/genética , Células HEK293 , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , ARN Ribosómico/genética , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Homología de Secuencia de Aminoácido
12.
Nucleic Acids Res ; 44(14): 6868-82, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27353330

RESUMEN

LRPPRC is a protein that has attracted interest both for its role in post-transcriptional regulation of mitochondrial gene expression and more recently because numerous mutated variants have been characterized as causing severe infantile mitochondrial neurodegeneration. LRPPRC belongs to the pentatricopeptide repeat (PPR) protein family, originally defined by their RNA binding capacity, and forms a complex with SLIRP that harbours an RNA recognition motif (RRM) domain. We show here that LRPPRC displays a broad and strong RNA binding capacity in vitro in contrast to SLIRP that associates only weakly with RNA. The LRPPRC-SLIRP complex comprises a hetero-dimer via interactions by polar amino acids in the single RRM domain of SLIRP and three neighbouring PPR motifs in the second quarter of LRPPRC, which critically contribute to the LRPPRC-SLIRP binding interface to enhance its stability. Unexpectedly, specific amino acids at this interface are located within the PPRs of LRPPRC at positions predicted to interact with RNA and within the RNP1 motif of SLIRP's RRM domain. Our findings thus unexpectedly establish that despite the prediction that these residues in LRPPRC and SLIRP should bind RNA, they are instead used to facilitate protein-protein interactions, enabling the formation of a stable complex between these two proteins.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Motivo de Reconocimiento de ARN , Proteínas de Unión al ARN/metabolismo , Secuencias Repetitivas de Aminoácido , Secuencia de Aminoácidos , Aminoácidos/genética , Secuencia Conservada , Reactivos de Enlaces Cruzados/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Mutación/genética , Proteínas de Neoplasias/química , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , ARN/metabolismo , Proteínas de Unión al ARN/química
13.
Cell Tissue Res ; 367(1): 5-20, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27411691

RESUMEN

Oxidative phosphorylation (OXPHOS) is the mechanism whereby ATP, the major energy source for the cell, is produced by harnessing cellular respiration in the mitochondrion. This is facilitated by five multi-subunit complexes housed within the inner mitochondrial membrane. These complexes, with the exception of complex II, are of a dual genetic origin, requiring expression from nuclear and mitochondrial genes. Mitochondrially encoded mRNA is translated on the mitochondrial ribosome (mitoribosome) and the recent release of the near atomic resolution structure of the mammalian mitoribosome has highlighted its peculiar features. However, whereas some aspects of mitochondrial translation are understood, much is to be learnt about the presentation of mitochondrial mRNA to the mitoribosome, the biogenesis of the machinery, the exact role of the membrane, the constitution of the translocon/insertion machinery and the regulation of translation in the mitochondrion. This review addresses our current knowledge of mammalian mitochondrial gene expression, highlights key questions and indicates how defects in this process can result in profound mitochondrial disease.


Asunto(s)
Mamíferos/metabolismo , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas , Animales , Humanos , Ribosomas Mitocondriales/metabolismo , Modelos Biológicos
14.
J Inherit Metab Dis ; 40(1): 121-130, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696117

RESUMEN

Mitochondrial diseases collectively represent one of the most heterogeneous group of metabolic disorders. Symptoms can manifest at any age, presenting with isolated or multiple-organ involvement. Advances in next-generation sequencing strategies have greatly enhanced the diagnosis of patients with mitochondrial disease, particularly where a mitochondrial aetiology is strongly suspected yet OXPHOS activities in biopsied tissue samples appear normal. We used whole exome sequencing (WES) to identify the molecular basis of an early-onset mitochondrial syndrome-pathogenic biallelic variants in the HTRA2 gene, encoding a mitochondria-localised serine protease-in five subjects from two unrelated families characterised by seizures, neutropenia, hypotonia and cardio-respiratory problems. A unifying feature in all affected children was 3-methylglutaconic aciduria (3-MGA-uria), a common biochemical marker observed in some patients with mitochondrial dysfunction. Although functional studies of HTRA2 subjects' fibroblasts and skeletal muscle homogenates showed severely decreased levels of mutant HTRA2 protein, the structural subunits and complexes of the mitochondrial respiratory chain appeared normal. We did detect a profound defect in OPA1 processing in HTRA2-deficient fibroblasts, suggesting a role for HTRA2 in the regulation of mitochondrial dynamics and OPA1 proteolysis. In addition, investigated subject fibroblasts were more susceptible to apoptotic insults. Our data support recent studies that described important functions for HTRA2 in programmed cell death and confirm that patients with genetically-unresolved 3-MGA-uria should be screened by WES with pathogenic variants in the HTRA2 gene prioritised for further analysis.


Asunto(s)
Variación Genética/genética , Serina Peptidasa A2 que Requiere Temperaturas Altas/genética , Errores Innatos del Metabolismo/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Muerte Celular/genética , Células Cultivadas , Niño , Exoma/genética , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas Mitocondriales/genética , Músculo Esquelético/metabolismo , Serina Proteasas/genética , Síndrome
15.
Hum Mol Genet ; 23(4): 949-67, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24092330

RESUMEN

Mutations of mitochondrial DNA are linked to many human diseases. Despite the identification of a large number of variants in the mitochondrially encoded rRNA (mt-rRNA) genes, the evidence supporting their pathogenicity is, at best, circumstantial. Establishing the pathogenicity of these variations is of major diagnostic importance. Here, we aim to estimate the disruptive effect of mt-rRNA variations on the function of the mitochondrial ribosome. In the absence of direct biochemical methods to study the effect of mt-rRNA variations, we relied on the universal conservation of the rRNA fold to infer their disruptive potential. Our method, named heterologous inferential analysis or HIA, combines conservational information with functional and structural data obtained from heterologous ribosomal sources. Thus, HIA's predictive power is superior to the traditional reliance on simple conservation indexes. By using HIA, we have been able to evaluate the disruptive potential for a subset of uncharacterized 12S mt-rRNA variations. Our analysis revealed the existence of variations in the rRNA component of the human mitoribosome with different degrees of disruptive power. In cases where sufficient information regarding the genetic and pathological manifestation of the mitochondrial phenotype is available, HIA data can be used to predict the pathogenicity of mt-rRNA mutations. In other cases, HIA analysis will allow the prioritization of variants for additional investigation. Eventually, HIA-inspired analysis of potentially pathogenic mt-rRNA variations, in the context of a scoring system specifically designed for these variants, could lead to a powerful diagnostic tool.


Asunto(s)
ARN Ribosómico/genética , ARN/genética , Simulación por Computador , Secuencia Conservada , Análisis Mutacional de ADN , Estudios de Asociación Genética , Humanos , Modelos Moleculares , Mutación , Neoplasias/genética , Conformación de Ácido Nucleico , ARN/química , ARN Mitocondrial , ARN Ribosómico/química
16.
Hum Mol Genet ; 23(23): 6345-55, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25008111

RESUMEN

The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , ARN Mensajero/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Humanos , Proteínas Mitocondriales/genética , Mutación , Proteínas de Neoplasias/metabolismo , Fosforilación Oxidativa , Polinucleotido Adenililtransferasa/genética , Cultivo Primario de Células , Procesamiento Postranscripcional del ARN , ARN Mitocondrial , Proteínas de Unión al ARN/metabolismo
17.
Brain ; 138(Pt 12): 3503-19, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26510951

RESUMEN

Mitochondrial Complex IV [cytochrome c oxidase (COX)] deficiency is one of the most common respiratory chain defects in humans. The clinical phenotypes associated with COX deficiency include liver disease, cardiomyopathy and Leigh syndrome, a neurodegenerative disorder characterized by bilateral high signal lesions in the brainstem and basal ganglia. COX deficiency can result from mutations affecting many different mitochondrial proteins. The French-Canadian variant of COX-deficient Leigh syndrome is unique to the Saguenay-Lac-Saint-Jean region of Québec and is caused by a founder mutation in the LRPPRC gene. This encodes the leucine-rich pentatricopeptide repeat domain protein (LRPPRC), which is involved in post-transcriptional regulation of mitochondrial gene expression. Here, we present the clinical and molecular characterization of novel, recessive LRPPRC gene mutations, identified using whole exome and candidate gene sequencing. The 10 patients come from seven unrelated families of UK-Caucasian, UK-Pakistani, UK-Indian, Turkish and Iraqi origin. They resemble the French-Canadian Leigh syndrome patients in having intermittent severe lactic acidosis and early-onset neurodevelopmental problems with episodes of deterioration. In addition, many of our patients have had neonatal cardiomyopathy or congenital malformations, most commonly affecting the heart and the brain. All patients who were tested had isolated COX deficiency in skeletal muscle. Functional characterization of patients' fibroblasts and skeletal muscle homogenates showed decreased levels of mutant LRPPRC protein and impaired Complex IV enzyme activity, associated with abnormal COX assembly and reduced steady-state levels of numerous oxidative phosphorylation subunits. We also identified a Complex I assembly defect in skeletal muscle, indicating different roles for LRPPRC in post-transcriptional regulation of mitochondrial mRNAs between tissues. Patient fibroblasts showed decreased steady-state levels of mitochondrial mRNAs, although the length of poly(A) tails of mitochondrial transcripts were unaffected. Our study identifies LRPPRC as an important disease-causing gene in an early-onset, multisystem and neurological mitochondrial disease, which should be considered as a cause of COX deficiency even in patients originating outside of the French-Canadian population.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Enfermedades Mitocondriales/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Canadá , Células Cultivadas , Preescolar , Deficiencia de Citocromo-c Oxidasa/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Proteínas Repetidas Ricas en Leucina , Masculino , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Mutación , Linaje , Proteínas/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial
19.
Biochim Biophys Acta ; 1842(1): 56-64, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24161539

RESUMEN

Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein synthesis since they charge tRNAs with their cognate amino acids. Mutations in the genes encoding mitochondrial aaRSs have been associated with a wide spectrum of human mitochondrial diseases. Here we report the identification of pathogenic mutations (a partial genomic deletion and a highly conserved p. Asp325Tyr missense variant) in FARS2, the gene encoding mitochondrial phenylalanyl-tRNA synthetase, in a patient with early-onset epilepsy and isolated complex IV deficiency in muscle. The biochemical defect was expressed in myoblasts but not in fibroblasts and associated with decreased steady state levels of COXI and COXII protein and reduced steady state levels of the mt-tRNA(Phe) transcript. Functional analysis of the recombinant mutant p. Asp325Tyr FARS2 protein showed an inability to bind ATP and consequently undetectable aminoacylation activity using either bacterial tRNA or human mt-tRNA(Phe) as substrates. Lentiviral transduction of cells with wildtype FARS2 restored complex IV protein levels, confirming that the p.Asp325Tyr mutation is pathogenic, causing respiratory chain deficiency and neurological deficits on account of defective aminoacylation of mt-tRNA(Phe).


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Deficiencia de Citocromo-c Oxidasa/genética , Epilepsia/genética , Mitocondrias/genética , Mutación , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación , Preescolar , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Deficiencia de Citocromo-c Oxidasa/complicaciones , Deficiencia de Citocromo-c Oxidasa/enzimología , Deficiencia de Citocromo-c Oxidasa/patología , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Epilepsia/complicaciones , Epilepsia/enzimología , Epilepsia/patología , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Humanos , Masculino , Mitocondrias/enzimología , Mitocondrias/patología , Datos de Secuencia Molecular , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Mioblastos/metabolismo , Mioblastos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
20.
Biochim Biophys Acta ; 1832(8): 1304-12, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23603806

RESUMEN

Multiple respiratory chain deficiencies represent a common cause of mitochondrial diseases and are associated with a wide range of clinical symptoms. We report a subject, born to consanguineous parents, with growth retardation and neurological deterioration. Multiple respiratory chain deficiency was found in muscle and fibroblasts of the subject as well as abnormal assembly of complexes I and IV. A microsatellite genotyping of the family members detected only one region of homozygosity on chromosome 17q24.2-q25.3 in which we focused our attention to genes involved in mitochondrial translation. We sequenced MRPL12, encoding the mitochondrial ribosomal protein L12 and identified a c.542C>T transition in exon 5 changing a highly conserved alanine into a valine (p.Ala181Val). This mutation resulted in a decreased steady-state level of MRPL12 protein, with altered integration into the large ribosomal subunit. Moreover, an overall mitochondrial translation defect was observed in the subject's fibroblasts with a significant reduction of synthesis of COXI, COXII and COXIII subunits. Modeling of MRPL12 shows Ala181 positioned in a helix potentially involved in an interface of interaction suggesting that the p.Ala181Val change might be predicted to alter interactions with the elongation factors. These results contrast with the eubacterial orthologues of human MRPL12, where L7/L12 proteins do not appear to have a selective effect on translation. Therefore, analysis of the mutated version found in the subject presented here suggests that the mammalian protein does not function in an entirely analogous manner to the eubacterial L7/L12 equivalent.


Asunto(s)
Proteínas de Ciclo Celular/genética , Trastornos del Crecimiento/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Enfermedades del Sistema Nervioso/genética , Proteínas Nucleares/genética , Proteínas Ribosómicas/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Preescolar , Fibroblastos/metabolismo , Genotipo , Trastornos del Crecimiento/metabolismo , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Enfermedades del Sistema Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Extensión de la Cadena Peptídica de Translación , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA