Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Small ; 20(22): e2309900, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38312091

RESUMEN

All-hydrogel supercapacitors are emerging as promising power sources for next-generation wearable electronics due to their intrinsic mechanical flexibility, eco-friendliness, and enhanced safety. However, the insufficient interfacial adhesion between the electrode and electrolyte and the frozen hydrogel matrices at subzero temperatures largely limit the practical applications of all-hydrogel supercapacitors. Here, an all-hydrogel supercapacitor is reported with robust interfacial contact and anti-freezing property, fabricated by in situ polymerizing hydrogel electrolyte onto hydrogel electrodes. The robust interfacial adhesion is developed by the synergistic effect of a tough hydrogel matrix and topological entanglements. Meanwhile, the incorporation of zinc chloride (ZnCl2) in the hydrogel electrolyte prevents the freezing of water solvents and endows the all-hydrogel supercapacitor with mechanical flexibility and fatigue resistance across a wide temperature range of 20 °C to -60 °C. Such all-hydrogel supercapacitor demonstrates satisfactory low-temperature electrochemical performance, delivering a high energy density of 11 mWh cm-2 and excellent cycling stability with a capacitance retention of 90% over 10000 cycles at -40 °C. Notably, the fabricated all-hydrogel supercapacitor can endure dynamic deformations and operate well under 2000 tension cycles even at -40 °C, without experiencing delamination and electrochemical failure. This work offers a promising strategy for flexible energy storage devices with low-temperature adaptability.

2.
Macromol Rapid Commun ; 36(4): 398-404, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25545630

RESUMEN

Lignin-grafted copolymers, namely lignin-graft-poly(methyl methacrylate-co-butyl acrylate) (lignin-g-P(MMA-co-BA)), are synthesized via "grafting from" atom transfer radical polymerization (ATRP) with the aid of lignin-based macroinitiators. By manipulating the monomer feed ratios of MMA/BA, grafted copolymers with tunable glass transition temperatures (-10-40 °C) are obtained. These copolymers are evaluated as sustainable thermoplastic elastomers (TPEs). The results suggest that the mechanical properties of these TPEs lignin-g-P(MMA-co-BA) copolymers are improved significantly by comparing with those of linear P(MMA-co-BA) copolymer counterparts, and the elastic strain recovery is nearly 70%. Lignin-g-P(MMA-co-BA) copolymers exhibit high absorption in the range of the UV spectrum, which might allow for applications in UV-blocking coatings.


Asunto(s)
Elastómeros/química , Lignina/química , Elastómeros/síntesis química , Metilmetacrilatos/química , Espectrofotometría Ultravioleta , Temperatura
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 1031-4, 2014 Apr.
Artículo en Zh | MEDLINE | ID: mdl-25007623

RESUMEN

Dihydroeugenol acrylate was synthesized by the reaction of acryloyl chloride (AC) with lignin mode compound dihydroeugenol (DH) in the presence of TEA and characterized by using FTIR, GC/MS, 1H-NMR and GPC. FTIR spectra showed that, after the esterification with acryloyl chloride, the intensity of stretching vibration peak of O-H (centered at 3 495 cm(-1)) of DH was disappeared. At the same time, a new peak appeared at 1 762 cm(-1) which was assigned to ester group. Additionally, the appearance of 1 631 and 981 cm(-1) were attributed to the carbon - carbon double bond confirmed the success in the synthesis of DH-AC. 1H-NMR spectra showed that, after the esterification with acryloyl chloride, the proton signal of O-H at 5.5 ppm was disappeared. Meanwhile, the appearance of three new proton signals at 6.0 ppm, 6.4 and 6.7 ppm, attributed to the vinylic protons, indicated that acryloyl chloride was successfully grafted onto DH. The results further confirmed the structures of the DH-AC. GC-MS results showed the DH-AC had a high purity of 98.63%. GPC results showed that dihydroeugenol acrylate could polymerize in the 1,4-dioxane using a thermal initiator of AIBN (2.0 Wt% of total monomers). The weight average molecular mass (Mw) of the homopolymer is 37 400 g x mol(-1), and the number average molecular mass is 23 400 g x mol(-1)' with a polydispersity index Mw/Mn of 1.60, indicating that the dihydroeugenol acrylate has high polymerization activity. This strategy provides a novel approach for extending the comprehensive utilization of lignin.


Asunto(s)
Eugenol/análogos & derivados , Lignina , Acrilatos , Dioxanos , Eugenol/síntesis química , Peso Molecular , Protones
4.
Int J Biol Macromol ; 254(Pt 3): 127948, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951432

RESUMEN

Colloidal lignin particles (CLPs) have sparked various intriguing insights toward bio-polymeric materials and triggered many lignin-featured innovative applications. Here, we report a multi-solvent sequential fractionation methodology integrating green solvents of acetone, 1-butanol, and ethanol to fractionate industrial lignin for CLPs fabrication. Through a rationally designed fractionation strategy, multigrade lignin fractions with variable hydroxyl group contents, molecular weights, and high purity were obtained without altering their original chemical structures. CLPs with well-defined morphology, narrow size distribution, excellent thermal stability, and long-term colloidal stability can be obtained by rational selection of lignin fractions. We further elucidated that trace elements (S, N) were reorganized onto the near-surface area of CLPs from lignin fractions during the formation process in the form of -SO42- and -NH2. This work provides a sustainable and efficient strategy for refining industrial lignin into high-quality fractions and an in-depth insight into the CLPs formation process, holding great promise for enriching the existing libraries of colloidal materials.


Asunto(s)
Etanol , Lignina , Solventes/química , Lignina/química , Acetona , Fraccionamiento Químico/métodos
5.
Int J Biol Macromol ; 268(Pt 2): 131946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692545

RESUMEN

The development of flexible wearable multifunctional electronics has gained great attention in the field of human motion monitoring. However, developing mechanically tough, highly stretchable, and recyclable composite conductive materials for application in multifunctional sensors remained great challenges. In this work, a mechanically tough, highly stretchable, and recyclable composite conductive elastomer with the dynamic physical-chemical dual-crosslinking network was fabricated by the combination of multiple hydrogen bonds and dynamic ester bonds. To prepare the proposed composite elastomers, the polyaniline-modified carboxylate cellulose nanocrystals (C-CNC@PANI) were used as both conductive filler to yield high conductivity of 15.08 mS/m, and mechanical reinforcement to construct the dynamic dual-crosslinking network with epoxidized natural rubber latex to realize the high mechanical strength (8.65 MPa) and toughness (29.57 MJ/m3). Meanwhile, the construction of dynamic dual-crosslinking network endowed the elastomer with satisfactory recyclability. Based on these features, the composite conductive elastomers were used as strain sensors, and electrode material for assembling flexible and recyclable self-powered sensors for monitoring human motions. Importantly, the composite conductive elastomers maintained reliable sensing and energy harvesting performance even after multiple recycling process. This study provides a new strategy for the preparation of recyclable, mechanically tough composite conductive materials for wearable sensors.


Asunto(s)
Celulosa , Elastómeros , Conductividad Eléctrica , Goma , Dispositivos Electrónicos Vestibles , Elastómeros/química , Celulosa/química , Goma/química , Humanos , Nanocompuestos/química , Nanopartículas/química , Fenómenos Mecánicos , Compuestos de Anilina/química
6.
Int J Biol Macromol ; 257(Pt 2): 128712, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081482

RESUMEN

Wheat gluten (WG) shows great promise to synthesize environment-friendly wood adhesives. However, their weak bonding strength and poor water resistance have limited its application in the commercial wood-based panel industry. In this study, a novel WG-based adhesive was developed by constructing a multiple cross-linking network generated by covalent and non-covalent bonds. The potential mechanism was revealed by FT-IR analysis. Furthermore, their surface morphology, thermal stability, viscosity, and residual rate of adhesives with different compositions were systematically characterized and compared. The results showed that the hydrogen bonding, reactions between amine groups and tannin, and ring opening reaction of epoxy, synergistically contributed to generate a highly crosslinked network. The wet/boil water strength of the plywood prepared from WG/tannin/ethylene imine polymer (PEI)-glycerol triglycidyl ether (GTE) adhesive with the addition of 15 % GTE could reach 1.21 MPa and 1.20 MPa, respectively, and a mildew resistance ability was observed. This study provides a facile strategy to fabricate high-performance plant protein-based adhesives with desirable water resistance for practical application.


Asunto(s)
Glútenes , Triticum , Taninos/química , Adhesivos/química , Madera/química , Agua/análisis , Espectroscopía Infrarroja por Transformada de Fourier
7.
Int J Biol Macromol ; 272(Pt 2): 132871, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862321

RESUMEN

Fabrication of sustainable bio-based malleable thermosets (BMTs) with excellent mechanical properties and reprocessing ability for applications in electronic devices has attracted more and more attention but remains significant challenges. Herein, the BMTs with excellent mechanical robustness and reprocessing ability were fabricated via integrating with radical polymerization and Schiff-base chemistry, and employed as the flexible substrate to prepare the capacitive sensor. To prepare the BMTs, an elastic bio-copolymer derived from plant oil and 5-hydroxymethylfurfural was first synthesized, and then used to fabricate the dynamic crosslinked BMTs through Schiff-base chemistry with the amino-modified cellulose and polyether amine. The synergistic effect of rigid cellulose backbone and the construction of dynamic covalent crosslinking network not only achieved high tensile strength (8.61 MPa) and toughness (3.77 MJ/m3) but also endowed the BMTs with excellent reprocessing ability with high mechanical toughness recovery efficiency of 104.8 %. More importantly, the BMTs were used as substrates to fabricate the capacitive sensor through the CO2-laser irradiation technique. The resultant capacitive sensor displayed excellent and sensitive humidity sensing performance, which allowed it to be successfully applied in human health monitoring. This work paved a promising way for the preparation of mechanical robustness malleable bio-thermosets for electronic devices.


Asunto(s)
Celulosa , Furaldehído , Aceites de Plantas , Celulosa/química , Furaldehído/química , Furaldehído/análogos & derivados , Aceites de Plantas/química , Capacidad Eléctrica , Temperatura , Resistencia a la Tracción , Humanos
8.
Macromol Rapid Commun ; 34(1): 8-37, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23065943

RESUMEN

The development of sustainable renewable polymers from natural resources has increasingly gained attention from scientists, engineers as well as the general public and government agencies. This review covers recent progress in the field of renewable bio-based monomers and polymers from natural resources: terpenes, terpenoids, and rosin, which are a class of hydrocarbon-rich biomass with abundance and low cost, holding much potential for utilization as organic feedstocks for green plastics and composites. This review details polymerization and copolymerization of terpenes such as pinene, limonene, and myrcene and their derivatives, terpenoids including carvone and menthol, and rosin-derived monomers. The future direction on the utilization of these natural resources is discussed.


Asunto(s)
Polímeros/química , Resinas de Plantas/química , Terpenos/química , Biomasa , Química Clic , Tecnología Química Verde , Polimerizacion , Polímeros/síntesis química , Resinas de Plantas/síntesis química , Terpenos/síntesis química
9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(11): 2940-4, 2013 Nov.
Artículo en Zh | MEDLINE | ID: mdl-24555356

RESUMEN

In order to improve the reaction activity of bioethanol lignin, we investigated the activation of bioethanol lignin by a hydrothermal treatment method. Catalytic hydrothermal treatment of bioethanol lignin was performed at 180 degrees C for 3 h in the presence of alkaline solutions (NaOH, Na2 CO3, KOH and K2 CO3), the change in bioethanol lignin structures was studied comparatively by FTIR, 1H NMR,GPC and elemental analysis. FTIR spectra showed that after alkali hydrothermal treatment, the band at 1 375 cm(-1) attributed to the phenolic hydroxyl groups increased, and the band intensity at 1 116 cm(-1) attributed to the ether bond decreased. On the other hand, the band at 1 597 and 1 511 cm(-1) attributed to aromatic skeletal vibration remained almost unchanged. 1H NMR spectra showed that after alkali hydrothermal treatment, the number of aromatic methoxyl is increased, and based on the increment of the content of phenolic hydroxyl, the catalytic activity can be ranked as follows: KOH > NaOH > K2 CO3 > Na2 CO3. Especially for KOH, the increment of the content of phenolic hydroxyl was 170%, because the ion radius of potassium cation is bigger than sodium cation, so the potassium cations more easily formed cation adducts with lignin. GPC results showed that the molecular weight of alkali hydrothermal treatment lignin decreased and the molecular distribution got wider. Elemental analysis showed that hydrothermal treatment could break the interlinkage between lignin and protein, which can reduce the protein content and increase the purity of lignin, meanwhile, the content of O and H both decreased,while C fell, indicating that the bioethanol lignin had suffered a decarbonylation reaction. This is the most benefit of the lignin as a substitute for phenol.


Asunto(s)
Biocombustibles , Lignina/química , Temperatura , Catálisis , Peso Molecular , Fenoles
10.
Int J Biol Macromol ; 242(Pt 3): 125095, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245746

RESUMEN

The sustainable development of high-performance bio-based adhesives is both important and challenging for the wood industry. Herein, inspired by the hydrophobic property of barnacle cement protein and the adhesive property of mussel adhesion protein, a water-resistant bio-based adhesive was developed from silk fibroin (SF) rich in hydrophobic ß-sheet structures and tannic acid (TA) rich in catechol groups as reinforcing components and soybean meal molecules rich in reactive groups as substrates. SF and soybean meal molecules formed a water-resistant tough structure through a multiple cross-linking network including covalent bonds, hydrogen bonds, and dynamic borate ester bonds constructed by TA and borax. The wet bond strength for the developed adhesive achieved 1.20 MPa, exhibiting its excellent application capabilities in humid environments. The storage period of the developed adhesive (72 h) was 3 times that of pure soybean meal adhesive owing to the enhanced mold resistance of the adhesive by TA. Furthermore, the developed adhesive demonstrated excellent biodegradability (45.45 % weight loss in 30 days) and flame retardancy (limiting oxygen index of 30.1 %). Overall, this environmental and efficient biomimetic strategy provides a promising and feasible route to develop high-performance bio-based adhesives.


Asunto(s)
Adhesivos , Fibroínas , Adhesivos/química , Organismos Acuáticos , Harina , Glycine max , Agua
11.
Carbohydr Polym ; 319: 121160, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567704

RESUMEN

The ingenious design of sustainable thermoplastic elastomers (STPEs) is of great significance for the goal of the sustainable development. However, the preparation of STPEs with good mechanical performance is still complicated and challenging. Herein, to achieve a simple preparation of STPEs with strong mechanical properties, two biobased monomers (tetrahydrofurfuryl methacrylate (THFMA) and lauryl methacrylate (LMA)) were copolymerized into poly (THFMA-co-LMA) (PTL) and grafted onto TEMPO oxidized cellulose nanofiber (TOCN) via one-pot surface-initiated atom transfer radical polymerization (SI ATRP). The grafting modified TOCN could be self-assembled into nano-enhanced phases in STPEs, which are conducive to the double enhancement of the strength and toughness of the STPEs, and the size of nano-enhanced phases is mainly affected by TOCN fiber length and molecular weight of grafting chains. Especially, with the addition of 7 wt% TOCN, tensile strength, tensile strain, toughness, and glass transition temperature (Tg) of TOCN based STPEs (TOCN@PTL) exhibited 140 %, 36 %, 215 %, and 6.8 °C increase respectively, which confirmed the leading level in the field of bio-based elastomers. In general, this work constitutes a proof for the chemical modification and self-assembly behavior of TOCN by one-pot SI ATRP, and provides an alternative strategy for the preparation of high-performance STPEs.

12.
Chemosphere ; 316: 137798, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36634714

RESUMEN

Efficient and feasible removal of trace antibiotics from wastewater is extremely important due to its environmental persistence, bioaccumulation, and toxicity, but still remains a huge challenge. Herein, three natural phenol-inspired porous organic polymers were fabricated from natural phenolic-derived monomers (p-hydroxy benzaldehyde, 2,4-dihydroxy benzaldehyde and 2,4,6-trihydroxy benzaldehyde) and melamine via polycondensation reaction. Characterization highlighted that the increasing contents of hydroxyl groups in monomers induced an increase of the polymer total porosity and promoted the formation of a highly microporous structure. With mesopore-dominated pore (average pore diameter 9.6 nm) and large pore volume (1.78 cm3/g), p-hydroxy benzaldehyde-based porous polymer (1-HBPP) exhibited ultra-high maximum adsorption capacity (qmax) of 697.6 mg/g for tetracycline (TC) antibiotic. Meanwhile, the porous networks and plentiful active sites of 1-HBPP enabled fast adsorption kinetics (within 10 min) for TC removal, which could be well described by the pseudo-second-order model. Dynamic adsorption studies showed that 1-HBPP could be used in fixed-bed adsorption column (FBAC) with high removal efficiency (breakthrough volume per unit mass, 13.2 L/g) and dynamic adsorption capacity (201.6 mg/g), which were much higher than other reported adsorbents. The breakthrough curves both well matched with Thomas and Yoon-Nelson models in FBAC treatment. Moreover, removal mechanism analysis affirmed that pore-filling, hydrogen bonding, electrostatic interactions and π-π stacking interactions were main driving forces for TC adsorption. The prepared natural phenol-inspired porous adsorbents show great potential in antibiotics removal from wastewater, and this strategy would promote the sustainable and high-value utilization of natural phenolic compounds.


Asunto(s)
Fenol , Contaminantes Químicos del Agua , Fenol/química , Porosidad , Benzaldehídos , Aguas Residuales , Tetraciclina , Antibacterianos , Fenoles , Polímeros/química , Adsorción , Contaminantes Químicos del Agua/química , Cinética
13.
Int J Biol Macromol ; 226: 1468-1476, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36442569

RESUMEN

Fabrication of ultra-strong, ultra-tough, sustainable, and degradable bio-based composites is urgently needed but remains challenging. Here, a biomimetic sustainable, degradable, and multi-stimuli responsive cellulose/PCL/Fe3O4 composite with ultra-strong mechanical strength and ultra-high toughness was developed. To prepare the proposed composites, the soft poly(ε-caprolactone) (PCL) side chain was grafted onto the rigid cellulose backbone, then the cellulose graft copolymer (EC-g-PCL) reacted with rigid hexamethylenediamine modified Fe3O4 nanoparticle (Fe3O4-NH2) to construct the crosslinking network using MDI-50 as a crosslinker. Given by the construction of crosslinking network and the "hard" and "soft" interactive structure, the composites showed ultra-strong mechanical strength (25.7 MPa) and ultra-high toughness (107.0 MJ/m3), and the composite specimen could lift a weight of approximately 21,200 times its mass. The composites also exhibited rapid degradation ability with high degradation efficiency. In addition, the composites showed excellent thermal responsive shape memory property with a shape recovery ratio above 96 %. Most importantly, the Fe3O4 nanoparticles endowed the composites with photothermal conversion property, the composites exhibited superior NIR light-triggered shape memory capability. The EC-g-PCL/Fe3O4 composites with ultra-strong mechanical strength and ultra-high toughness have promising applications in heavy-lift, object transportation, and self-tightening knots.


Asunto(s)
Celulosa , Poliésteres , Celulosa/química , Poliésteres/química , Biomimética , Polímeros/química
14.
Int J Biol Macromol ; 227: 815-826, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521716

RESUMEN

Pickering emulsion is a promising strategy for the preparation of hydrophobic polymer composite using hydrophilic nanocellulose. Herein, two types of microfibril cellulose, pure mechanical pretreated microfibril cellulose (P-MFC) and Deep eutectic solvents pretreated microfibril cellulose (DES-MFC), were used to fabricate reinforced hydrophobic polystyrene (PS) composites (MFC/PS) with the aid of Pickering emulsion. The results showed that both oil/water ratio and the content as well as surface hydrophilicity of MFC were playing an important role in emulsifying capacity. 8 % MFC/PS emulsion showed the smallest and most uniform emulsion droplets which is similar to nanofibril cellulose (NFC)/PS at the oil/water ratio of 3:1. The mechanical performance of MFC/PS composites verified that the reinforcement effect was closely related to the emulsifying capacity of MFC. Specially, when the content of P-MFC was 8 wt%, the composite exhibited the best mechanical properties with the tensile strength of 44.7 ± 4.4 MPa and toughness of 1162 ± 52.8 kJ/m3 and Young's modulus of 13.5 ± 0.8 GPa, which was comparable to NFC/PS composite. Moreover, the effective enhancement role of P-MFC in hydrophobic polymethyl methacrylate and polycarbonate composites were also realized via Pickering emulsion strategy. Overall, this work constituted a proof of concept of the potential application of P-MFC in nano-reinforced hydrophobic composite.


Asunto(s)
Celulosa , Polímeros , Polímeros/química , Celulosa/química , Emulsiones/química , Madera , Microfibrillas , Interacciones Hidrofóbicas e Hidrofílicas , Poliestirenos
15.
Gels ; 9(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37754406

RESUMEN

Hydrogels containing renewable resources, such as hemicellulose, have received a lot of attention owing to their softness and electrical conductivity which could be applied in soft devices and wearable equipment. However, traditional hemicellulose-based hydrogels generally exhibit poor electrical conductivity and suffer from freezing at lower temperatures owing to the presence of a lot of water. In this study, we dissolved hemicellulose by employing deep eutectic solvents (DESs), which were prepared by mixing choline chloride and imidazole. In addition, hemicellulose-based DES hydrogels were fabricated via photo-initiated reactions of acrylamide and hemicellulose with N, N'-Methylenebisacrylamide as a crosslinking agent. The produced hydrogels demonstrated high electrical conductivity and anti-freezing properties. The conductivity of the hydrogels was 2.13 S/m at room temperature and 1.97 S/m at -29 °C. The hydrogel's freezing point was measured by differential scanning calorimetry (DSC) to be -47.78 °C. Furthermore, the hemicellulose-based DES hydrogels can function as a dependable and sensitive strain sensor for monitoring a variety of human activities.

16.
Int J Biol Macromol ; 248: 125900, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481191

RESUMEN

Triboelectric nanogenerators (TENGs) as promising energy harvesting devices have gained increasing attention. However, the fabrication of TENG simultaneously meets the requirements of green start feedstock, flexible, stretchable, and environmentally friendly remains challenging. Herein, the hydroxyethyl cellulose macromonomer (HECM) simultaneously bearing acrylate and hydroxyl groups was first synthesized and used as a crosslinker to prepare the chemically and physically dual-crosslinked cellulose composite hydrogel for an electrode material of stretchable TENG. Meanwhile, the in-situ polymerization of pyrrole endowed the hydrogel with satisfactory conductivity of 0.40 S/m. More impressively, the synergies of the cellulose rigid skeleton and the construction of the dual-crosslinking network significantly improved the mechanical toughness, and the hydrogel exhibited excellent self-strengthening through cyclic compression mechanical training, the self-strengthening efficiency reached 124.7 % after 10 compression cycles. Given these features, the hydrogel was used as wearable strain sensors with extremely high sensitivity (GF = 3.95) for real-time monitoring human motions. Additionally, the hydrogel showed practical applications in stretchable H-TENG for converting mechanical energy into electric energy to light LEDs and power a digital watch, and in self-powered wearable sensors to distinguish human motions and English letters. This work provided a promising strategy for fabricating sustainable, eco-friendly energy harvesting and self-powered electronic devices.


Asunto(s)
Electricidad , Hidrogeles , Humanos , Conductividad Eléctrica , Celulosa , Electrodos
17.
Int J Biol Macromol ; 227: 462-471, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521712

RESUMEN

Conductive hydrogels have attracted increasing attention for applications in wearable and flexible strain sensors. However, owing to their relatively weak strength, poor elasticity, and lack of anti-freezing ability, their applications have been limited. Herein, we present a skin-mimicking strategy to fabricate cellulose-enhanced, strong, elastic, highly conductive, and anti-freezing hydrogels. Self-assembly of cellulose to fabricate a cellulose skeleton is essential for realizing a skin-mimicking design. Furthermore, two methods, in situ polymerization and solvent replacement, were compared and investigated to incorporate conductive and anti-freezing components into hydrogels. Consequently, when the same ratio of glycerol and lithium chloride was used, the anti-freezing hydrogels prepared by in situ polymerization showed relatively higher strength (1.0 MPa), while the solvent-replaced hydrogels exhibited higher elastic recovery properties (94.6 %) and conductivity (4.5 S/m). In addition, their potential as strain sensors for monitoring human behavior was analyzed. Both hydrogels produced reliable signals and exhibited high sensitivity. This study provides a new horizon for the fabrication of strain sensors that can be applied in various environments.


Asunto(s)
Celulosa , Hidrogeles , Humanos , Elasticidad , Glicerol , Conductividad Eléctrica , Solventes
18.
Nanomicro Lett ; 16(1): 22, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982913

RESUMEN

Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety, mechanical and thermal stability and easy-to-direct stacking. Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness, high conductivity and intrinsic flexibility. However, the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors. Here, we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance. The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode. Meanwhile, the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures. More significantly, the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance, delivering high-energy density of 39 Wh kg-1 at -60 °C with capacity retention of 98.7% over 10,000 cycles. With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte, the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at -60 °C. This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors.

19.
Carbohydr Polym ; 312: 120827, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059554

RESUMEN

Stretchable and tough polysaccharide-based functional hydrogels have gained popularity for various applications. However, it still remains a great challenge to simultaneously own satisfactory stretchability and toughness, particularly when incorporating renewable xylan to offer sustainability. Herein, we describe a novel stretchable and tough xylan-based conductive hydrogel utilizing the natural feature of rosin derivative. The effect of different compositions on the mechanical properties and the physicochemical properties of corresponding xylan-based hydrogels were systematically investigated. Owing to the multiple non-covalent interactions among different components to dissipate energies and the strain-induced orientation of rosin derivative during the stretching, the highest tensile strength, strain, and toughness of xylan-based hydrogels could reach 0.34 MPa, 2098.4 %, and 3.79 ± 0.95 MJ/m3, respectively. Furthermore, by incorporating MXene as the conductive fillers, the strength and toughness of hydrogels were further enhanced to 0.51 MPa and 5.95 ± 1.19 MJ/m3. Finally, the synthesized xylan-based hydrogels were able to serve as a reliable and sensitive strain sensor to monitor the movements of human beings. This study provides new insights to develop stretchable and tough conductive xylan-based hydrogel, especially utilizing the natural feature of bio-based resources.


Asunto(s)
Hidrogeles , Xilanos , Humanos , Conductividad Eléctrica , Movimiento
20.
Carbohydr Polym ; 294: 119760, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35868784

RESUMEN

With the development of wearable devices, the fabrication of strong, tough, antibacterial, and conductive hydrogels for sensor applications is necessary but remains challenging. Here, a skin-inspired biomimetic strategy integrated with in-situ reduction has been proposed. The self-assembly of cellulose to generate a cellulose skeleton was essential to realize the biomimetic structural design. Furthermore, in-situ generation of silver nanoparticles on the skeleton was easily achieved by a heating process. This process not only offered the excellent antibacterial property to hydrogels, but also improved the mechanical properties of hydrogels due to the elimination of negative effect of silver nanoparticles aggregation. The highest tensile strength and toughness could reach 2.0 MPa and 11.95 MJ/m3, respectively. Moreover, a high detection range (up to 1300%) and sensitivity (gauge factor = 4.4) was observed as the strain sensors. This study provides a new horizon to fabricate strong, tough and functional hydrogels for various applications in the future.


Asunto(s)
Hidrogeles , Nanopartículas del Metal , Antibacterianos/farmacología , Biomimética , Celulosa , Conductividad Eléctrica , Hidrogeles/química , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA