Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 142(15): 1281-1296, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37478401

RESUMEN

Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder characterized by combined immunodeficiency, eczema, microthrombocytopenia, autoimmunity, and lymphoid malignancies. Gene therapy (GT) to modify autologous CD34+ cells is an emerging alternative treatment with advantages over standard allogeneic hematopoietic stem cell transplantation for patients who lack well-matched donors, avoiding graft-versus-host-disease. We report the outcomes of a phase 1/2 clinical trial in which 5 patients with severe WAS underwent GT using a self-inactivating lentiviral vector expressing the human WAS complementary DNA under the control of a 1.6-kB fragment of the autologous promoter after busulfan and fludarabine conditioning. All patients were alive and well with sustained multilineage vector gene marking (median follow-up: 7.6 years). Clinical improvement of eczema, infections, and bleeding diathesis was universal. Immune function was consistently improved despite subphysiologic levels of transgenic WAS protein expression. Improvements in platelet count and cytoskeletal function in myeloid cells were most prominent in patients with high vector copy number in the transduced product. Two patients with a history of autoimmunity had flares of autoimmunity after GT, despite similar percentages of WAS protein-expressing cells and gene marking to those without autoimmunity. Patients with flares of autoimmunity demonstrated poor numerical recovery of T cells and regulatory T cells (Tregs), interleukin-10-producing regulatory B cells (Bregs), and transitional B cells. Thus, recovery of the Breg compartment, along with Tregs appears to be protective against development of autoimmunity after GT. These results indicate that clinical and laboratory manifestations of WAS are improved with GT with an acceptable safety profile. This trial is registered at clinicaltrials.gov as #NCT01410825.


Asunto(s)
Eccema , Trasplante de Células Madre Hematopoyéticas , Síndrome de Wiskott-Aldrich , Humanos , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Proteína del Síndrome de Wiskott-Aldrich/genética , Células Madre Hematopoyéticas/metabolismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Terapia Genética/métodos , Eccema/etiología , Eccema/metabolismo , Eccema/terapia
2.
J Pathol ; 263(3): 347-359, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734878

RESUMEN

Vascular permeability is temporarily heightened during inflammation, but excessive inflammation-associated microvascular leakage can be detrimental, as evidenced in the inflamed lung. Formylated peptides regulate vascular leakage indirectly via formylated peptide receptor-1 (FPR1)-mediated recruitment and activation of neutrophils. Here we identify how the GTPase-activating protein ARAP3 protects against formylated peptide-induced microvascular permeability via endothelial cells and neutrophils. In vitro, Arap3-/- endothelial monolayers were characterised by enhanced formylated peptide-induced permeability due to upregulated endothelial FPR1 and enhanced vascular endothelial cadherin internalisation. In vivo, enhanced inflammation-associated microvascular leakage was observed in Arap3-/- mice. Leakage of plasma protein into the lungs of Arap3-/- mice increased within hours of formylated peptide administration. Adoptive transfer experiments indicated this was dependent upon ARAP3 deficiency in both immune and non-immune cells. Bronchoalveolar lavages of formylated peptide-challenged Arap3-/- mice contained neutrophil extracellular traps (NETs). Pharmacological inhibition of NET formation abrogated excessive microvascular leakage, indicating a critical function of NETs in this context. The observation that Arap3-/- mice developed more severe influenza suggests these findings are pertinent to pathological situations characterised by abundant formylated peptides. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Permeabilidad Capilar , Células Endoteliales , Ratones Noqueados , Neutrófilos , Animales , Neutrófilos/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Ratones , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Ratones Endogámicos C57BL , Trampas Extracelulares/metabolismo , Pulmón/metabolismo , Pulmón/patología , Pulmón/irrigación sanguínea
3.
Nature ; 559(7715): E13, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29899441

RESUMEN

In this Letter, analysis of steady-state regulatory T (Treg) cell percentages from Il2ra enhancer deletion (EDEL) and wild-type (WT) mice revealed no differences between them (Extended Data Fig. 9d). This analysis included two mice whose genotypes were incorrectly assigned. Even after correction of the genotypes, no significant differences in Treg cell percentages were seen when data across experimental cohorts were averaged (as was done in Extended Data Fig. 9d). However, if we normalize the corrected data to account for variation among experimental cohorts, a subtle decrease in EDEL Treg cell percentages is revealed and, using the corrected and normalized data, we have redrawn Extended Data Fig. 9d in Supplementary Fig. 1. The Supplementary Information to this Amendment contains the corrected and reanalysed Extended Data Fig. 9d. The sentence "This enhancer deletion (EDEL) strain also had no obvious T cell phenotypes at steady state (Extended Data Fig. 9)." should read: "This enhancer deletion (EDEL) strain had a small decrease in the percentage of Treg cells (Extended Data Fig. 9).". This error does not affect any of the main figures in the Letter or the data from mice with the human autoimmune-associated single nucleotide polymorphism (SNP) knocked in or with a 12-base-pair deletion at the site (12DEL). In addition, we stated in the Methods that we observed consistent immunophenotypes of EDEL mice across three founders, but in fact, we observed consistent phenotypes in mice from two founders. This does not change any of our conclusions and the original Letter has not been corrected.

4.
Nature ; 549(7670): 111-115, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28854172

RESUMEN

The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.


Asunto(s)
Autoinmunidad/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Elementos de Facilitación Genéticos/genética , Animales , Antígenos CD/biosíntesis , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/biosíntesis , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/inmunología , Diferenciación Celular , Línea Celular , Cromatina/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Subunidad alfa del Receptor de Interleucina-2/biosíntesis , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/inmunología , Lectinas Tipo C/biosíntesis , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Células Th17/citología , Células Th17/inmunología
5.
Pediatr Blood Cancer ; 69(5): e29641, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253361

RESUMEN

BACKGROUND: Transplant-associated thrombotic microangiopathy (TA-TMA) is an endothelial injury complication of hematopoietic stem cell transplant (HSCT) leading to end-organ damage and high morbidity and mortality. Defibrotide is an anti-inflammatory and antithrombotic agent that may protect the endothelium during conditioning. PROCEDURE: We hypothesized that prophylactic use of defibrotide during HSCT conditioning and acute recovery could prevent TA-TMA. A pilot single-arm phase II trial (NCT#03384693) evaluated the safety and feasibility of administering prophylactic defibrotide to high-risk pediatric patients during HSCT and assessed if prophylactic defibrotide prevented TA-TMA compared to historic controls. Patients received defibrotide 6.25 mg/kg IV q6h the day prior to the start of conditioning through day +21. Patients were prospectively monitored for TA-TMA from admission through week 24 post transplant. Potential biomarkers of endothelial injury (suppression of tumorigenicity 2 [ST2], angiopoietin-2 [ANG-2], plasminogen activator inhibitor-1 [PAI-1], and free hemoglobin) were analyzed. RESULTS: Twenty-five patients were enrolled, 14 undergoing tandem autologous HSCT for neuroblastoma and 11 undergoing allogeneic HSCT. Defibrotide was discontinued early due to possibly related clinically significant bleeding in 12% (3/25) of patients; no other severe adverse events occurred due to the study intervention. The other 22 patients missed a median of 0.7% of doses (0%-5.2%). One patient developed nonsevere TA-TMA 12 days post HSCT. This observed TA-TMA incidence of 4% was below the historic rate of 18%-40% in a similar population of allogeneic and autologous patients. CONCLUSIONS: Our study provides evidence that defibrotide prophylaxis is feasible in pediatric patients undergoing HSCT at high risk for TA-TMA and preliminary data indicating that defibrotide may reduce the risk of TA-TMA.


Asunto(s)
Polidesoxirribonucleótidos , Microangiopatías Trombóticas , Niño , Trasplante de Células Madre Hematopoyéticas , Humanos , Proyectos Piloto , Polidesoxirribonucleótidos/efectos adversos , Medición de Riesgo , Microangiopatías Trombóticas/prevención & control
6.
J Immunol ; 203(6): 1579-1588, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31427445

RESUMEN

Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion. Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils. Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neutrophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutrophils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation.


Asunto(s)
Inflamación/metabolismo , Integrinas/metabolismo , Neutrófilos/metabolismo , Animales , Células CHO , Adhesión Celular/fisiología , Línea Celular , Cricetulus , Proteínas Activadoras de GTPasa/metabolismo , Ratones , Infiltración Neutrófila/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología
7.
J Pediatr Hematol Oncol ; 43(6): e808-e811, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815876

RESUMEN

Overlapping myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal hematopoietic disorders with features of myelodysplasia and myeloproliferation. The only well-characterized MDS/MPN in children is juvenile myelomonocytic leukemia, an aggressive disorder of infants and toddlers. The biochemical hallmark of this disease is hyperactivation of the Ras/MAPK signaling pathway caused by mutations in Ras pathway genes in more than 90% of patients. Translocations involving receptor tyrosine kinases have been identified in rare cases. Here, we report a 2-year-old patient who presented with MDS/MPN driven by a cytogenetically cryptic NUP98-NSD1 fusion, a translocation thought to exclusively occur in patients with acute myeloid leukemia.


Asunto(s)
Leucemia Mielomonocítica Juvenil/genética , Enfermedades Mielodisplásicas-Mieloproliferativas/genética , Proteínas de Fusión Oncogénica/genética , Preescolar , Citogenética , Femenino , Humanos , Leucemia Mielomonocítica Juvenil/diagnóstico , Enfermedades Mielodisplásicas-Mieloproliferativas/diagnóstico , Translocación Genética
8.
J Cell Physiol ; 234(5): 7569-7578, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30368818

RESUMEN

Stem cells are often transplanted with scaffolds for tissue regeneration; however, how the mechanical property of a scaffold modulates stem cell fate in vivo is not well understood. Here we investigated how matrix stiffness modulates stem cell differentiation in a model of vascular graft transplantation. Multipotent neural crest stem cells (NCSCs) were differentiated from induced pluripotent stem cells, embedded in the hydrogel on the outer surface of nanofibrous polymer grafts, and implanted into rat carotid arteries by anastomosis. After 3 months, NCSCs differentiated into smooth muscle cells (SMCs) near the outer surface of the polymer grafts; in contrast, NCSCs differentiated into glial cells in the most part of the hydrogel. Atomic force microscopy demonstrated a stiffer matrix near the polymer surface but much lower stiffness away from the polymer graft. Consistently, in vitro studies confirmed that stiff surface induced SMC genes whereas soft surface induced glial genes. These results suggest that the scaffold's mechanical properties play an important role in directing stem cell differentiation in vivo, which has important implications in biomaterials design for stem cell delivery and tissue engineering.


Asunto(s)
Diferenciación Celular/fisiología , Cresta Neural/citología , Células-Madre Neurales/citología , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Hidrogeles/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Nanofibras/química , Cresta Neural/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neuroglía/citología , Neuroglía/efectos de los fármacos , Polímeros/química , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido
9.
Biochem Soc Trans ; 46(3): 649-658, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29743277

RESUMEN

Inflammation is a complex biological response that serves to protect the body's tissues following harmful stimuli such as infection, irritation or injury and initiates tissue repair. At the start of an inflammatory response, pro-inflammatory mediators induce changes in the endothelial lining of the blood vessels and in leukocytes. This results in increased vascular permeability and increased expression of adhesion proteins, and promotes adhesion of leukocytes, especially neutrophils to the endothelium. Adhesion is a prerequisite for neutrophil extravasation and chemoattractant-stimulated recruitment to inflammatory sites, where neutrophils phagocytose and kill microbes, release inflammatory mediators and cross-talk with other immune cells to co-ordinate the immune response in preparation for tissue repair. Many signalling proteins are critically involved in the complex signalling processes that underpin the inflammatory response and cross-talk between endothelium and leukocytes. As key regulators of cell-cell and cell-substratum adhesion, small GTPases (guanosine triphosphatases) act as important controls of neutrophil-endothelial cell interactions as well as neutrophil recruitment to sites of inflammation. Here, we summarise key processes that are dependent upon small GTPases in leukocytes during these early inflammatory events. We place a particular focus on the regulation of integrin-dependent events and their control by Rho and Rap family GTPases as well as their regulators during neutrophil adhesion, chemotaxis and recruitment.


Asunto(s)
Comunicación Celular , Endotelio/patología , Inflamación/patología , Leucocitos/patología , Proteínas de Unión al GTP Monoméricas/metabolismo , Animales , Endotelio/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Integrinas/metabolismo , Leucocitos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología
10.
J Immunol ; 197(12): 4771-4779, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807193

RESUMEN

Neutrophils act as a first line of defense against bacterial and fungal infections, but they are also important effectors of acute and chronic inflammation. Genome-wide association studies have established that the gene encoding the protein tyrosine phosphatase nonreceptor 22 (PTPN22) makes an important contribution to susceptibility to autoimmune disease, notably rheumatoid arthritis. Although PTPN22 is most highly expressed in neutrophils, its function in these cells remains poorly characterized. We show in this article that neutrophil effector functions, including adhesion, production of reactive oxygen species, and degranulation induced by immobilized immune complexes, were reduced in Ptpn22-/- neutrophils. Tyrosine phosphorylation of Lyn and Syk was altered in Ptpn22-/- neutrophils. On stimulation with immobilized immune complexes, Ptpn22-/- neutrophils manifested reduced activation of key signaling intermediates. Ptpn22-/- mice were protected from immune complex-mediated arthritis, induced by the transfer of arthritogenic serum. In contrast, in vivo neutrophil recruitment following thioglycollate-induced peritonitis and in vitro chemotaxis were not affected by lack of PTPN22. Our data suggest an important role for PTPN22-dependent dephosphorylation events, which are required to enable full FcγR-induced activation, pointing to an important role for this molecule in neutrophil function.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/genética , Neutrófilos/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo , Animales , Complejo Antígeno-Anticuerpo , Artritis Experimental/genética , Adhesión Celular , Degranulación de la Célula , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Neutrófila , Fosforilación , Polimorfismo Genético , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores de IgG/metabolismo , Transducción de Señal , Quinasa Syk/metabolismo , Familia-src Quinasas/metabolismo
11.
J Allergy Clin Immunol ; 138(3): 852-859.e3, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27130861

RESUMEN

BACKGROUND: Dedicator of cytokinesis 8 (DOCK8) deficiency can be cured by allogeneic hematopoietic stem cell transplantation (HSCT). Reports of outcomes are still limited. OBJECTIVE: We sought to analyze the results of HSCT in patients with DOCK8 deficiency and report whether approaches resulting in mixed chimerism result in clinically relevant immune reconstitution. METHODS: We performed a retrospective chart review of 11 patients with DOCK8 deficiency and measured DOCK8 expression and cytokine production. RESULTS: Of 11 patients, 7 received HSCT from related and 4 from unrelated donors; 9 patients received busulfan-based conditioning regimens. Survival was excellent (10 [91%] of 11 patients alive), including a patient who had undergone liver transplantation. Patients showed significant improvements in the frequency and severity of infections. Although eczema resolved in all, food allergies and high IgE levels persisted in some patients. Lymphopenia, eosinophilia, low numbers of naive CD8(+) T cells and switched memory B cells, and TH1/TH2 cytokine imbalance improved in most patients. Although the 8 matched related or unrelated donor recipients had full donor chimerism, all 3 recipients of mismatched unrelated donor HSCT had high levels of donor T-cell chimerism and low B-cell and myeloid cell chimerism (0% to 46%). Almost all switched memory B cells were of donor origin. All patients, including those with mixed chimerism, mounted robust antibody responses to vaccination. CONCLUSION: Allogeneic HSCT ameliorated the infectious and atopic symptoms of patients with DOCK8 deficiency. In patients with mixed chimerism, selective advantage for donor-derived T cells and switched memory B cells promoted restoration of cellular and humoral immunity and protection against opportunistic infection.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/deficiencia , Trasplante de Células Madre Hematopoyéticas , Síndromes de Inmunodeficiencia/inmunología , Linfocitos B/inmunología , Niño , Preescolar , Citocinas/inmunología , Femenino , Humanos , Leucocitos Mononucleares/inmunología , Masculino , Linfocitos T/inmunología , Resultado del Tratamiento
12.
Fetal Pediatr Pathol ; 35(5): 344-347, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27494161

RESUMEN

Umbilical cord cysts warrant evaluation for structural defects and chromosomal anomalies such as trisomy 18, depending on the type of cyst. The appearance of an enlarged or "gigantic" cord has particular association with a patent urachus, often requiring operative exploration to repair the associated urachal remnant. We describe the unusual case of an umbilical cord cyst-measuring 9 cm in maximal diameter and comprising histopathological features of an urachalcyst-presenting in a healthy ex-36 week newborn with no associated anomalies.

13.
Biochem Biophys Res Commun ; 444(4): 562-7, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24486489

RESUMEN

Multipotent vascular stem cells have been implicated in vascular disease and in tissue remodeling post therapeutic intervention. Hyper-proliferation and calcified extracellular matrix deposition of VSC cause blood vessel narrowing and plaque hardening thereby increasing the risk of myocardial infarct. In this study, to optimize the surface design of vascular implants, we determined whether micropatterned polymer surfaces can modulate VSC differentiation and calcified matrix deposition. Undifferentiated rat VSC were cultured on microgrooved surfaces of varied groove widths, and on micropost surfaces. 10µm microgrooved surfaces elongated VSC and decreased cell proliferation. However, microgrooved surfaces did not attenuate calcified extracellular matrix deposition by VSC cultured in osteogenic media conditions. In contrast, VSC cultured on micropost surfaces assumed a dendritic morphology, were significantly less proliferative, and deposited minimal calcified extracellular matrix. These results have significant implications for optimizing the design of cardiovascular implant surfaces.


Asunto(s)
Aorta/citología , Células Madre/citología , Andamios del Tejido/química , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dimetilpolisiloxanos/química , Osteogénesis , Ratas , Propiedades de Superficie
14.
Nat Mater ; 12(12): 1154-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24141451

RESUMEN

Biochemical factors can help reprogram somatic cells into pluripotent stem cells, yet the role of biophysical factors during reprogramming is unknown. Here, we show that biophysical cues, in the form of parallel microgrooves on the surface of cell-adhesive substrates, can replace the effects of small-molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells' epigenetic state. Specifically, decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5)--a subunit of H3 methyltranferase--by microgrooved surfaces lead to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fibre orientation produce effects similar to those produced by microgrooves, suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications.


Asunto(s)
Materiales Biocompatibles/química , Adhesión Celular , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Pluripotentes Inducidas/citología , Actinas/química , Acilación , Animales , Ingeniería Celular/métodos , Forma de la Célula , Epitelio/patología , Fibroblastos/citología , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mesodermo/patología , Metilación , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Miosinas/química , Nanotecnología , Propiedades de Superficie
15.
Sci Adv ; 10(7): eadk0639, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354231

RESUMEN

We investigate how matrix stiffness regulates chromatin reorganization and cell reprogramming and find that matrix stiffness acts as a biphasic regulator of epigenetic state and fibroblast-to-neuron conversion efficiency, maximized at an intermediate stiffness of 20 kPa. ATAC sequencing analysis shows the same trend of chromatin accessibility to neuronal genes at these stiffness levels. Concurrently, we observe peak levels of histone acetylation and histone acetyltransferase (HAT) activity in the nucleus on 20 kPa matrices, and inhibiting HAT activity abolishes matrix stiffness effects. G-actin and cofilin, the cotransporters shuttling HAT into the nucleus, rises with decreasing matrix stiffness; however, reduced importin-9 on soft matrices limits nuclear transport. These two factors result in a biphasic regulation of HAT transport into nucleus, which is directly demonstrated on matrices with dynamically tunable stiffness. Our findings unravel a mechanism of the mechano-epigenetic regulation that is valuable for cell engineering in disease modeling and regenerative medicine applications.


Asunto(s)
Reprogramación Celular , Cromatina , Cromatina/genética , Reprogramación Celular/genética , Fibroblastos , Epigénesis Genética
16.
Transplant Cell Ther ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944154

RESUMEN

BACKGROUND: Transplant associated thrombotic microangiopathy (TA-TMA) is a complication of hematopoietic cell transplant (HCT) associated with endothelial injury resulting in severe end organ damage, acute and long-term morbidity, and mortality. Myeloablative conditioning is a known risk factor, though specific causative agents have not been identified. We hypothesized that the combination of cyclophosphamide and thiotepa (CY+TT) is particularly toxic to the endothelium, placing patients at elevated risk for TA-TMA. METHODS: We conducted a retrospective review of pediatric and young adult patients who received conditioned autologous and allogeneic HCT between 2012 and August 2023 at UCSF Benioff Children's Hospital, San Francisco. We excluded patients undergoing gene therapy or triple tandem transplants for brain tumors. Neuroblastoma tandem transplants were classified a single transplant occurrence. High dose N-acetylcysteine (NAC) prophylaxis was incorporated into the institutional standard of care from December 2016-May 2019 and May 2022-August 2023. Defibrotide was given prophylactically to patients deemed high-risk for sinusoidal obstruction syndrome (SOS) per institutional guidelines or on clinical trial NCT#02851407 for SOS prophylaxis or NCT#03384693 for TA-TMA prophylaxis. Kaplan-Meier analysis was used to estimate the 1-year cumulative incidence of TA-TMA. Univariate analysis was performed for each of the potential risk factors of interest using log-rank tests and bivariate analysis with Cox regression models using backward selection and hazard ratios were built using all covariates with a univariate p-value <0.2 for allogeneic HCT. SPSS (v29) was used to estimate all summary statistics, cumulative incidences, and uni- and bi-variate analyses. RESULTS: A total of 558 transplants were performed with 43 patients developing TA-TMA, for a 1-year cumulative incidence of 8.6% (95% CI, 5.9-11.3%) and 7.2% (95% CI, 2.9-11.5%) in allogeneic and autologous HCTs, respectively (p=0.62). In allogeneic recipients (n=417), the 1-year cumulative incidence of TA-TMA with CY+TT as part of conditioning was 35.7% (95% CI, 15.7-55.7%) compared to 11.7% (95% CI, 7.2-16.2%) with either CY or TT alone, and 1.2% (95% CI, 0-2.8%) if neither agent was included in the conditioning regimen (p<0.001). Use of either CY or TT (HR=10.14; p=0.002) or CY+TT (HR=35.93; p<0.001), viral infections (HR=4.3; p=0.017) and fungal infections (HR=2.98; p=0.027) were significant factors resulting in increased risk for developing TA-TMA. In subjects undergoing autologous HCT (n=141), the 1-year cumulative incidence of TA-TMA with CY+TT was 19.6% (95% CI, 8.8-30.6%) while TA-TMA did not occur in patients receiving either CY or TT alone or when neither were included (p<0.001). TA-TMA occurred only in patients with neuroblastoma receiving CY+TT as part of their conditioning. For autologous patients who received CY+TT, those who were CMV seronegative at the time of HCT had an incidence of TA-TMA of 6.7% (95% CI, 0.1-15.7%) compared to 38.1% (95% CI, 35-41.2%) for those CMV seropositive (p=0.007). CONCLUSIONS: These data show that CY or TT alone or in combination as part of pre-transplant conditioning prior to HCT increase the incidence of TA-TMA. Alternative conditioning excluding the combination of CY+TT should be considered whenever possible to limit the development of TA-TMA.

17.
Transplant Cell Ther ; 30(7): 690.e1-690.e16, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38631464

RESUMEN

Sinusoidal obstructive syndrome (SOS), or veno-occlusive disease, of the liver has been recognized as a complex, life-threatening complication in the posthematopoietic stem cell transplant (HSCT) setting. The diagnostic criteria for SOS have evolved over the last several decades with a greater understanding of the underlying pathophysiology, with 2 recent diagnostic criteria introduced in 2018 (European Society of Bone Marrow Transplant [EBMT] criteria) and 2020 (Cairo criteria). We sought out to evaluate the performance characteristics in diagnosing and grading SOS in pediatric patients of the 4 different diagnostic criteria (Baltimore, Modified Seattle, EBMT, and Cairo) and severity grading systems (defined by the EBMT and Cairo criteria). Retrospective chart review of children, adolescent, and young adults who underwent conditioned autologous and allogeneic HSCT between 2017 and 2021 at a single pediatric institution. A total of 250 consecutive patients underwent at least 1 HSCT at UCSF Benioff Children's Hospital San Francisco for a total of 307 HSCT. The day 100 cumulative incidence of SOS was 12.1%, 21.1%, 28.4%, and 28.4% per the Baltimore, Modified Seattle, EBMT, and Cairo criteria, respectively (P < .001). We found that patients diagnosed with grade ≥4 SOS per the Cairo criteria were more likely to be admitted to the Pediatric Intensive Care Unit (92% versus 58%, P = .035) and intubated (85% versus 32%, P = .002) than those diagnosed with grade ≥4 per EBMT criteria. Age <3 years-old (HR 1.76, 95% [1.04 to 2.98], P = .036), an abnormal body mass index (HR 1.69, 95% [1.06 to 2.68], P = .027), and high-risk patients per our institutional guidelines (HR 1.68, 95% [1.02 to 2.76], P = .041) were significantly associated with SOS per the Cairo criteria. We demonstrate that age <3 years, abnormal body mass index, and other high-risk criteria associate strongly with subsequent SOS development. Patients with moderate to severe SOS based on Cairo severity grading system may correlate better with clinical course based on ICU admissions and intubations when compared to the EBMT severity grading system.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Enfermedad Veno-Oclusiva Hepática , Humanos , Enfermedad Veno-Oclusiva Hepática/diagnóstico , Enfermedad Veno-Oclusiva Hepática/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Adolescente , Niño , Masculino , Femenino , Preescolar , Adulto Joven , Estudios Retrospectivos , Lactante , Adulto , Índice de Severidad de la Enfermedad
18.
Nat Commun ; 15(1): 3258, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637498

RESUMEN

Viral infections remain a major risk in immunocompromised pediatric patients, and virus-specific T cell (VST) therapy has been successful for treatment of refractory viral infections in prior studies. We performed a phase II multicenter study (NCT03475212) for the treatment of pediatric patients with inborn errors of immunity and/or post allogeneic hematopoietic stem cell transplant with refractory viral infections using partially-HLA matched VSTs targeting cytomegalovirus, Epstein-Barr virus, or adenovirus. Primary endpoints were feasibility, safety, and clinical responses (>1 log reduction in viremia at 28 days). Secondary endpoints were reconstitution of antiviral immunity and persistence of the infused VSTs. Suitable VST products were identified for 75 of 77 clinical queries. Clinical responses were achieved in 29 of 47 (62%) of patients post-HSCT including 73% of patients evaluable at 1-month post-infusion, meeting the primary efficacy endpoint (>52%). Secondary graft rejection occurred in one child following VST infusion as described in a companion article. Corticosteroids, graft-versus-host disease, transplant-associated thrombotic microangiopathy, and eculizumab treatment correlated with poor response, while uptrending absolute lymphocyte and CD8 T cell counts correlated with good response. This study highlights key clinical factors that impact response to VSTs and demonstrates the feasibility and efficacy of this therapy in pediatric HSCT.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trasplante de Células Madre Hematopoyéticas , Virosis , Humanos , Niño , Herpesvirus Humano 4 , Factores de Riesgo , Trasplante de Células Madre Hematopoyéticas/efectos adversos
19.
Blood ; 118(7): 1774-83, 2011 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-21659548

RESUMEN

Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34(+) cells) display greater E-selectin binding than those obtained from mouse (lin(-)/Sca-1(+)/c-kit(+) [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34(+) and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved by Western blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ~ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand-1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ~ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL." E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL's contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures.


Asunto(s)
Antígenos CD34/metabolismo , Selectina E/metabolismo , Células Madre Hematopoyéticas/metabolismo , Animales , Línea Celular , Células Cultivadas , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Leucosialina/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética
20.
Sci Rep ; 13(1): 7689, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169815

RESUMEN

22q11.2 deletion syndrome, associated with congenital and neuropsychiatric anomalies, is the most common copy number variant (CNV)-associated syndrome. Patient-derived, induced pluripotent stem cell (iPS) models have provided insight into this condition. However, patient-derived iPS cells may harbor underlying genetic heterogeneity that can confound analysis. Furthermore, almost all available models reflect the commonly-found ~ 3 Mb "A-D" deletion at this locus. The ~ 1.5 Mb "A-B" deletion, a variant of the 22q11.2 deletion which may lead to different syndromic features, and is much more frequently inherited than the A-D deletion, remains under-studied due to lack of relevant models. Here we leveraged a CRISPR-based strategy to engineer isogenic iPS models of the 22q11.2 "A-B" deletion. Differentiation to excitatory neurons with subsequent characterization by transcriptomics and cell surface proteomics identified deletion-associated alterations in proliferation and adhesion. To illustrate in vivo applications of this model, we further implanted neuronal progenitor cells into the cortex of neonatal mice and found potential alterations in neuronal maturation. The isogenic models generated here will provide a unique resource to study this less-common variant of the 22q11.2 microdeletion syndrome.


Asunto(s)
Síndrome de DiGeorge , Animales , Ratones , Humanos , Síndrome de DiGeorge/genética , Estructuras Cromosómicas , Heterogeneidad Genética , Neuronas , Deleción Cromosómica , Cromosomas Humanos Par 22/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA