Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 569(7757): 581-585, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043749

RESUMEN

Methylation of cytosine to 5-methylcytosine (5mC) is a prevalent DNA modification found in many organisms. Sequential oxidation of 5mC by ten-eleven translocation (TET) dioxygenases results in a cascade of additional epigenetic marks and promotes demethylation of DNA in mammals1,2. However, the enzymatic activity and function of TET homologues in other eukaryotes remains largely unexplored. Here we show that the green alga Chlamydomonas reinhardtii contains a 5mC-modifying enzyme (CMD1) that is a TET homologue and catalyses the conjugation of a glyceryl moiety to the methyl group of 5mC through a carbon-carbon bond, resulting in two stereoisomeric nucleobase products. The catalytic activity of CMD1 requires Fe(II) and the integrity of its binding motif His-X-Asp, which is conserved in Fe-dependent dioxygenases3. However, unlike previously described TET enzymes, which use 2-oxoglutarate as a co-substrate4, CMD1 uses L-ascorbic acid (vitamin C) as an essential co-substrate. Vitamin C donates the glyceryl moiety to 5mC with concurrent formation of glyoxylic acid and CO2. The vitamin-C-derived DNA modification is present in the genome of wild-type C. reinhardtii but at a substantially lower level in a CMD1 mutant strain. The fitness of CMD1 mutant cells during exposure to high light levels is reduced. LHCSR3, a gene that is critical for the protection of C. reinhardtii from photo-oxidative damage under high light conditions, is hypermethylated and downregulated in CMD1 mutant cells compared to wild-type cells, causing a reduced capacity for photoprotective non-photochemical quenching. Our study thus identifies a eukaryotic DNA base modification that is catalysed by a divergent TET homologue and unexpectedly derived from vitamin C, and describes its role as a potential epigenetic mark that may counteract DNA methylation in the regulation of photosynthesis.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas Algáceas/metabolismo , Ácido Ascórbico/metabolismo , Biocatálisis , Chlamydomonas reinhardtii/enzimología , ADN/química , ADN/metabolismo , 5-Metilcitosina/química , Dióxido de Carbono/metabolismo , Metilación de ADN , Glioxilatos/metabolismo , Nucleósidos/química , Nucleósidos/metabolismo , Fotosíntesis
2.
J Am Chem Soc ; 146(12): 8688-8696, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38482699

RESUMEN

Carbocations play a pivotal role as reactive intermediates in zeolite-catalyzed methanol-to-hydrocarbon (MTH) transformations. However, the interaction between carbocations and water vapor and its subsequent effects on catalytic performance remain poorly understood. Using micro-magnetic resonance imaging (µMRI) and solid-state NMR techniques, this work investigates the hydrophilic behavior of cyclopentenyl cations within ZSM-5 pores under vapor conditions. We show that the polar cationic center of cyclopentenyl cations readily initiates water nucleus formation through water molecule capture. This leads to an inhomogeneous water adsorption gradient along the axial positions of zeolite, correlating with the spatial distribution of carbocation concentrations. The adsorbed water promotes deprotonation and aromatization of cyclopentenyl cations, significantly enhancing the aromatic product selectivity in MTH catalysis. These results reveal the important influence of adsorbed water in modulating the carbocation reactivity within confined zeolite pores.

3.
Chemistry ; 30(34): e202401006, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38625163

RESUMEN

Direct determination of the equilibrium adsorption and spectroscopic observation of adsorbent-adsorbate interaction is crucial to evaluate the olefin/paraffin separation performance of porous adsorbents. However, the experimental characterization of competitive adsorption of various adsorbates at atomic-molecular level in the purification of multicomponent gas mixtures is challenging and rarely conducted. Herein, solid-state NMR spectroscopy is employed to examine the effect of co-adsorbed guest adsorbates on the separation of ethylene/ethane mixtures on Mg-MOF-74, Zn-MOF-74 and UTSA-74. 1H MAS NMR facilitates the determination of equilibrium uptake and adsorption selectivity of ethylene/ethane in ternary mixtures. The co-adsorption of H2O and CO2 significantly leads to the degradation of ethylene uptake and ethylene/ethane selectivity. The detailed host-guest and guest-guest interactions are unraveled by 2D 1H-1H spin diffusion homo-nuclear correlation and static 25Mg NMR experiments. The experimental results verify H2O coordinated on open metal sites can supply a new adsorption site for ethylene and ethane. The effects of guest adsorbates on the adsorption capacity and adsorption selectivity of ethylene/ethane mixtures are in the following order: H2O>CO2>O2. This work provides a direct approach for exploring the equilibrium adsorption and detailed separation mechanism of multicomponent gas mixtures using MOFs adsorbents.

4.
Angew Chem Int Ed Engl ; 63(23): e202404633, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38509004

RESUMEN

Solvent effects in catalytic reactions have received widespread attention as they can promote reaction rates and product selectivities by orders of magnitude. It is well accepted that the stable five-membered cyclic intermediates formed between the solvent molecules and Ti species are crucial to the alkene epoxidation in a heterogeneous Ti(IV)-H2O2 system. However, the direct spectroscopic evidence of these intermediates is still missing and the corresponding reaction pathway for the alkene epoxidation remains unclear. By combining in situ 13C MAS NMR, two-dimensional (2D) 1H-13C heteronuclear correlation (HETCOR) NMR spectroscopy and theoretical calculations, the five-membered ring structures, where the protic solvents (ROH), and aprotic solvent (acetone), coordinate and stabilize the active Ti species, are identified for the first time over Ti-Beta/H2O2 system. Moreover, the role of these cyclic intermediates in the alkene epoxidation/hydration conversion is clarified. These results provide new insights into the solvent effect in liquid-phase epoxidation/hydration reactions over Ti(IV)-H2O2 system.

5.
Angew Chem Int Ed Engl ; 63(3): e202313974, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37934010

RESUMEN

Water is a ubiquitous component in heterogeneous catalysis over zeolites and can significantly influence the catalyst performance. However, the detailed mechanism insights into zeolite-catalyzed reactions under microscale aqueous environment remain elusive. Here, using multiple dimensional solid-state NMR experiments coupled with ultrahigh magic angle spinning technique and theoretical simulations, we establish a fundamental understanding of the role of water in benzene methylation over ZSM-5 zeolite under water vapor conditions. We show that water competes with benzene for the active sites of zeolite and facilitates the bimolecular reaction mechanism. The growth of water clusters induces a micro-hydrophobic effect in zeolite pores, which reorients benzene molecules and drives their interactions with surface methoxy species (SMS) on zeolite. We identify the formation and evolution of active SMS-Benzene complexes in a microscale aqueous environment and demonstrate that their accumulation in zeolite pores boosts benzene conversion and methylation.

6.
J Am Chem Soc ; 145(9): 5342-5352, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36812430

RESUMEN

Zeolites are widely used as catalysts and adsorbents in the chemical industry, but their potential for electronic devices has been stunted to date, as they are commonly recognized as electronic insulators. Here, we have for the first time demonstrated that Na-type ZSM-5 zeolites are ultrawide-direct-band-gap semiconductors based on optical spectroscopy, variable-temperature current-voltage characteristics, and photoelectric effect as well as electronic structure theoretical calculations and further unraveled the band-like charge transport mechanism in electrically conductive zeolites. The increase in charge-compensating Na+ cations in Na-ZSM-5 decreases the band gap and affects its density of states, shifting the Fermi level close to the conduction band. Remarkably, the semiconducting Na-ZSM-5 zeolites have been first applied for constructing electrically transduced sensors that can sense trace-level (77 ppb) ammonia with unprecedentedly high sensitivity, negligible cross-sensitivity, and high stability under moisture ambient conditions compared with conventional semiconducting materials and conductive metal-organic frameworks (MOFs). The charge density difference shows that the massive electron transfer between NH3 molecules and Na+ cations ascribed to Lewis acid sites enables electrically transduced chemical sensing. This work opens a new era of zeolites in applications of sensing, optics, and electronics.

7.
Ergonomics ; 66(11): 1730-1749, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37139680

RESUMEN

Given that automation complacency, a hitherto controversial concept, is already used to blame and punish human drivers in current accident investigations and courts, it is essential to map complacency research in driving automation and determine whether current research can support its legitimate usage in these practical fields. Here, we reviewed its status quo in the domain and conducted a thematic analysis. We then discussed five fundamental challenges that might undermine its scientific legitimation: conceptual confusion exists in whether it is an individual versus systems problem; uncertainties exist in current evidence of complacency; valid measures specific to complacency are lacking; short-term laboratory experiments cannot address the long-term nature of complacency and thus their findings may lack external validity; and no effective interventions directly target complacency prevention. The Human Factors/Ergonomics community has a responsibility to minimise its usage and defend human drivers who rely on automation that is far from perfect.Practitioner summary: Human drivers are accused of complacency and overreliance on driving automation in accident investigations and courts. Our review work shows that current academic research in the driving automation domain cannot support its legitimate usage in these practical fields. Its misuse will create a new form of consumer harms.


Asunto(s)
Conducción de Automóvil , Conducta Social , Humanos , Automatización , Ergonomía , Sistemas Hombre-Máquina , Accidentes de Tránsito/prevención & control
8.
Phys Chem Chem Phys ; 24(11): 6535-6543, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35258049

RESUMEN

Solid-state NMR spectroscopy in conjunction with theoretical calculation was employed to investigate the adsorbent-adsorbate host-guest interactions during propane/propylene separation on ZIF-8. 1H NMR chemical shifts of free gaseous and adsorbed propane/propylene are unambiguously assigned with the assistance of two-dimensional (2D) 1H-1H correlation spectroscopy (COSY) MAS NMR spectra. Meanwhile, the adsorption selectivity for propane/propylene mixtures on ZIF-8 at a pressure in range of 1.9-9.6 bar is quantitatively determined using 1H MAS NMR experiments, which agreed well with the ideal adsorbed solution theory (IAST) predictions. The preferential adsorption of propane compared with propylene on ZIF-8 is directly visualized from the 2D 1H-1H spin diffusion homo-nuclear correlation (HOMCOR) MAS NMR spectroscopy. Moreover, the preferential adsorption sites for propane and propylene are deduced from the 1H-1H spin diffusion buildup curves, which is further confirmed by DFT theoretical calculations. This work provides insights to understand the structure-property relationship during the propane/propylene separation on ZIF-8 as adsorbent.

9.
Angew Chem Int Ed Engl ; 61(24): e202203603, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35320622

RESUMEN

A clear understanding of the acidic properties of bridging Si-OH-Al groups containing crystallographically different oxygen atoms in zeolites is a prerequisite for optimizing their performance as industrial solid catalysts and developing new acid-catalyzed reactions, but presents many challenges. Here, we report the direct observation of yet unrecognized bridging Si-OH-Al groups in the LTA zeolite whose oxygen atoms are crystallographically different from those of already known Brønsted acid sites. We also report that the creation of a crystallographically particular type of bridging OH groups in zeolites and its concentration and acid strength can vary strongly with the content and spatial distribution of framework Al atoms, thus being synthetic in nature, which has been rationalized in terms of the secondary building unit concept.

10.
Angew Chem Int Ed Engl ; 61(42): e202207400, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36001462

RESUMEN

Understanding the acid sites on zeolites is vital for the establishment of catalyst structure-activity relationship and exploration of their potential applications in heterogeneous catalysis. Here, we report the identification of active framework Lewis acid sites on ZSM-5 zeolites. The structures of framework-associated tri-coordinated Al that is bonding with hydroxyl groups are determined by using one- dimensional (1D) 31 P and two-dimensional (2D) 31 P-{27 Al} NMR spectroscopy of trimethylphosphine oxide probe molecule. 2D 13 C-{27 Al} NMR correlation experiments allow the observation of favorable formation of methoxy species on the framework-associated Al Lewis acid sites in methanol reaction at low temperature, which is corroborated by density functional theory calculations. These methoxy species contribute to the further conversion of methanol to hydrocarbons as active C1 species. The results provide new insights into the Lewis acidity of zeolites.

11.
Chemistry ; 27(44): 11303-11308, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34109690

RESUMEN

The separation of ethane/ethylene mixture by using metal-organic frameworks (MOFs) as adsorbents is strongly associated with the pore size-sieving effect and the adsorbent-adsorbate interaction. Herein, solid-state NMR spectroscopy is utilized to explore the host-guest interaction and ethane/ethylene separation mechanism on zeolitic imidazolate frameworks (ZIFs). Preferential access to the ZIF-8 and ZIF-8-90 frameworks by ethane compared to ethylene is directly visualized from two-dimensional 1 H-1 H spin diffusion MAS NMR spectroscopy and further verified by computational density distributions. The 1 H MAS NMR spectroscopy provides an alternative for straightforwardly extracting the adsorption selectivity of ethane/ethylene mixture at 1.1∼9.6 bar in ZIFs, which is consistent with the IAST predictions.

12.
Chemistry ; 27(59): 14711-14720, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34357658

RESUMEN

The breathing effects of functionalized MIL-53-X (X=H, CH3 , NH2 , OH, and NO2 ) induced by the inclusions of water, methanol, acetone, and N,N-dimethylformamide solvents were comprehensively investigated by solid-state NMR spectroscopy. 2D homo-nuclear correlation NMR provided direct experimental evidence for the host-guest interaction between the guest solvents and the MOF frameworks. The variations of the 1 H and 13 C NMR chemical shifts in functionalized MIL-53 from the narrow pore phase transitions to large pore forms due to solvent inclusions were clearly identified. The influence of functionalized linkers and their host-guest interactions with the confined solvents on the rotational dynamics of the linkers was examined by separated-local-field MAS NMR experiments in conjunction with DFT theoretical calculations. It is found that the linker rotational dynamics of functionalized MIL-53 in narrow pore form is closely related to the computational rotational energy barrier. The BDC-NO2 linker of activated MIL-53-NO2 undergoes relatively faster rotation, whereas the BDC-NH2 and BDC-OH linkers of activated MIL-53-NH2 and MIL-53-OH exhibit relatively slower rotation. The host-guest interactions between confined solvents and MIL-53-NO2 , MIL-53-CH3 would significantly induce an increase of the order parameters of unsubstituted carbon and reduce the rotational frequency of linkers. This study provides a spectroscopic approach for the investigation of linker rotation in functionalized MOFs at natural abundance with solvents inclusions.

13.
Angew Chem Int Ed Engl ; 60(51): 26847-26854, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34636120

RESUMEN

Carbocations such as cyclic carbenium ions are important intermediates in the zeolite-catalyzed methanol-to-olefins (MTO) reaction. The MTO reaction propagates through a complex hydrocarbon pool process. Understanding the carbocation-involved hydrocarbon pool reaction on a molecular level still remains challenging. Here we show that electron-deficient cyclopentenyl cations stabilized in ZSM-5 zeolite are able to capture the alkanes, methanol, and olefins produced during MTO reaction via noncovalent interactions. Intermolecular spatial proximities/interactions are identified by using two-dimensional 13 C-13 C correlation solid-state NMR spectroscopy. Combined NMR experiments and theoretical analysis suggests that in addition to the dispersion and CH/π interactions, the multiple functional groups in the cyclopentenyl cations produce strong attractive force via cation-induced dipole, cation-dipole and cation-π interactions. These carbocation-induced noncovalent interactions modulate the product selectivity of hydrocarbon pool reaction.

14.
Phys Chem Chem Phys ; 22(22): 12644-12650, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32458929

RESUMEN

The effects of salts on protein systems are not yet fully understood. We investigated the ionic dynamics of three halide salts (NaI, NaBr, and NaCl) with two protein models, namely poly(N-isopropylacrylamide) (PNIPAM) and poly(N,N-diethylacrylamide) (PDEA), using multinuclear NMR, dispersion corrected density functional theory (DFT-D) calculations and dynamic light scattering (DLS) methods. The variation in ionic line-widths and chemical shifts induced by the polymers clearly illustrates that anions rather than cations interact directly with the polymers. From the variable temperature measurements of the NMR transverse relaxation rates of anions, which characterize the polymer-anion interaction intensities, the evolution behaviors of Cl-/Br-/I- during phase transitions are similar in each polymer system but differ between the two polymer systems. The NMR transverse relaxation rates of anions change synchronously with the phase transition of PNIPAM upon heating, but they drop rapidly and vanish about 3-4.5 °C before the phase transition of PDEA. By combining the DFT-D and DLS data, the relaxation results imply that anions escape from the interacting sites with PDEA prior to full polymer dehydration or collapse, which can be attributed to the lack of anion-NH interactions. The different dynamic evolutions of the anions in the PNIPAM and PDEA systems give us an important clue for understanding the micro-mechanism of protein folding in a complex salt aqueous solvent.


Asunto(s)
Acrilamidas/química , Resinas Acrílicas/química , Teoría Funcional de la Densidad , Polímeros/química , Proteínas/química , Bromuros/química , Dispersión Dinámica de Luz , Modelos Moleculares , Cloruro de Sodio/química , Compuestos de Sodio/química , Yoduro de Sodio/química , Temperatura
15.
Magn Reson Chem ; 58(11): 1091-1098, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31314911

RESUMEN

The acid strength of metal-organic frameworks plays a key role in their catalytic performance such as activity and selectivity during catalytic reactions. Solid-state nuclear magnetic resonance in combination with probe molecules including 2-13 C-acetone and pyridine-d5 was employed to characterize the acid strength of UiO-66-X (X = -H, -2COOH, -SO3 H). It was found that after introduction of the functional groups, the acid strength of UiO-66-2COOH and UiO-66-SO3 H is considerably enhanced compared with that of parent UiO-66, with that of the former being similar to that of zeolite H-ZSM-5, and with that of the latter being slightly stronger than that of the former. Even though the acid density can efficiently be modified through changing the relative ratio in multivariate functionalized UiO-66-X, no significant alternation for the acid strength could be discerned in the MTV-UiO-66-X compared with acidic same-link counterpart. Theoretical calculations were employed to further confirm the acid strength of UiO-66-SO3 H and UiO-66-2COOH.

16.
Magn Reson Chem ; 58(11): 1082-1090, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31659777

RESUMEN

Metal-organic frameworks (MOFs) are a class of important porous materials with many current and potential applications. Their applications almost always involve the interaction between host framework and guest species. Therefore, understanding of host-guest interaction in MOF systems is fundamentally important. Solid-state NMR spectroscopy is an excellent technique for investigating host-guest interaction as it provides information complementary to that obtained from X-ray diffraction. In this work, using MOF α-Mg3 (HCOO)6 as an example, we demonstrated that 13 C chemical shift tensor of organic linker can be utilized to probe the host-guest interaction in MOFs. Obtaining 13 C chemical shift tensor components (δ11 , δ22 , and δ33 , where δ11 ≥ δ22 ≥ δ33 ) in this MOF is particularly challenging as there are six coordinatively equivalent but crystallographically non-equivalent carbons in the unit cell with very similar local coordination environment. Two-dimensional magic-angle-turning experiments were employed to measure the 13 C chemical shift tensors of each individual crystallographically non-equivalent carbon in three microporous α-Mg3 (HCOO)6 samples with different guest species. The results indicate that the δ22 component (with its direction approximately being co-planar with the formate anion and perpendicular to the C-H bond) is more sensitive to the adsorbate molecules inside the MOF channel due to the weak C-H···O hydrogen bonding or the ring current effect of benzene. The 13 C isotropic chemical shift, on the other hand, seems much less sensitive to the subtle changes in the local environment around formate linker induced by adsorption. The approach described in this study may be used in future studies on host-guest interaction within MOFs.

17.
Angew Chem Int Ed Engl ; 59(44): 19532-19538, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32449837

RESUMEN

Lewis acid zeolites have found increasing application in the field of biomass conversion, in which the selective transformation of carbonyl-containing molecules is of particular importance due to their relevance in organic synthesis. Mechanistic insight into the activation of carbonyl groups on Lewis acid sites is challenging and critical for the understanding of the catalytic process, which requires the identification of reaction intermediates. Here we report the observation of a stable surface gem-diol-type species in the activation of acetone on Sn-ß zeolite. 13 C, 119 Sn, and 13 C-119 Sn double-resonance NMR spectroscopic studies demonstrate that only the open Sn site ((SiO)3 Sn-OH) on Sn-ß is responsible for the formation of the surface species. 13 C MAS NMR experiments together with density functional theory calculations suggest that the gem-diol-type species exhibits high reactivity and can serve as an active intermediate in the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reaction of acetone with cyclohexanol. The gem-diol-type species offers an energy-preferable pathway for the direct carbon-to-carbon hydrogen transfer between ketone and alcohol. The results provide new insights into the transformation of carbonyl-containing molecules catalyzed by Lewis acid zeolites.

18.
Angew Chem Int Ed Engl ; 59(18): 7198-7202, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32061116

RESUMEN

The understanding of catalyst deactivation represents one of the major challenges for the methanol-to-hydrocarbon (MTH) reaction over acidic zeolites. Here we report the critical role of intermolecular π-interactions in catalyst deactivation in the MTH reaction on zeolites H-SSZ-13 and H-ZSM-5. π-interaction-induced spatial proximities between cyclopentenyl cations and aromatics in the confined channels and/or cages of zeolites are revealed by two-dimensional solid-state NMR spectroscopy. The formation of naphtalene as a precursor to coke species is favored due to the reaction of aromatics with the nearby cyclopentenyl cations and correlates with both acid density and zeolite topology.

19.
Analyst ; 144(24): 7149-7156, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31657365

RESUMEN

Safranin O is an important and classical phenazinium dye; since the 19th century, it has been extensively used in the academic field as a spectroscopic probe and indicator. Surprisingly, we found that this long-used reagent is without exception a mixture. In this study, the four main components in a Safranin O sample were prepared, and their chemical structures were elucidated for the first time. Optical property investigations showed that the components had somewhat different absorbance properties and markedly different fluorescence properties, and their structure-optical activity relationships were also discussed. It could be inferred that the variation of each component in the content would unavoidably result in inconsistent optical data when using this Safranin O reagent as a spectroscopic probe or indicator. Considering the accurate transfer of measurement results between laboratories, high-purity Safranin O is in urgent demand in the academic field.

20.
Angew Chem Int Ed Engl ; 58(35): 12138-12142, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31283076

RESUMEN

Currently, the synthesis of pure silica zeolites always requires the presence of organic structure-directing agents (OSDAs), which direct the assembly pathway and ultimately fill the pore space. A sustainable route is now reported for synthesizing pure silica zeolites in the absence of OSDAs from a combined strategy of zeolite seeding and alcohol filling, where the zeolite seeds direct crystallization of zeolite crystals from amorphous silica, while the alcohol is served as pore filling in the zeolites. Very importantly, the alcohol could be fully washed out from zeolite pores by water at room temperature, which completely avoids calcination at high temperature for removal of OSDAs in the synthesis of pure silica zeolites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA