Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(21): e2217826120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192160

RESUMEN

Molecular classification of gastric cancer (GC) identified a subgroup of patients showing chemoresistance and poor prognosis, termed SEM (Stem-like/Epithelial-to-mesenchymal transition/Mesenchymal) type in this study. Here, we show that SEM-type GC exhibits a distinct metabolic profile characterized by high glutaminase (GLS) levels. Unexpectedly, SEM-type GC cells are resistant to glutaminolysis inhibition. We show that under glutamine starvation, SEM-type GC cells up-regulate the 3 phosphoglycerate dehydrogenase (PHGDH)-mediated mitochondrial folate cycle pathway to produce NADPH as a reactive oxygen species scavenger for survival. This metabolic plasticity is associated with globally open chromatin structure in SEM-type GC cells, with ATF4/CEBPB identified as transcriptional drivers of the PHGDH-driven salvage pathway. Single-nucleus transcriptome analysis of patient-derived SEM-type GC organoids revealed intratumoral heterogeneity, with stemness-high subpopulations displaying high GLS expression, a resistance to GLS inhibition, and ATF4/CEBPB activation. Notably, coinhibition of GLS and PHGDH successfully eliminated stemness-high cancer cells. Together, these results provide insight into the metabolic plasticity of aggressive GC cells and suggest a treatment strategy for chemoresistant GC patients.


Asunto(s)
Fosfoglicerato-Deshidrogenasa , Neoplasias Gástricas , Humanos , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Línea Celular Tumoral , Glutamina/metabolismo , Nutrientes
2.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202606

RESUMEN

Cancer is heterogeneous among patients, requiring a thorough understanding of molecular subtypes and the establishment of therapeutic strategies based on its behavior. Gastric cancer (GC) is adenocarcinoma with marked heterogeneity leading to different prognoses. As an effort, we previously identified a stem-like subtype, which is prone to metastasis, with the worst prognosis. Here, we propose FNBP1 as a key to high-level cell motility, present only in aggressive GC cells. FNBP1 is also up-regulated in both the GS subtype from the TCGA project and the EMT subtype from the ACRG study, which include high portions of diffuse histologic type. Ablation of FNBP1 in the EMT-type GC cell line brought changes in the cell periphery in transcriptomic analysis. Indeed, loss of FNBP1 resulted in the loss of invasive ability, especially in a three-dimensional culture system. Live imaging indicated active movement of actin in FNBP1-overexpressed cells cultured in an extracellular matrix dome. To find the transcription factor which drives FNBP1 expression in an EMT-type GC cell line, the FNBP1 promoter region and DNA binding motifs were analyzed. Interestingly, the Sp1 motif was abundant in the promoter, and pharmacological inhibition and knockdown of Sp1 down-regulated FNBP1 promoter activity and the transcription level, respectively. Taken together, our results propose Sp1-driven FNBP1 as a key molecule explaining aggressiveness in EMT-type GC cells.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Proteínas de Unión a Ácidos Grasos/genética , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción Sp1/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Secuencia de Bases , Sitios de Unión , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Matriz Extracelular , Proteínas de Unión a Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Invasividad Neoplásica , Motivos de Nucleótidos , Neoplasias Gástricas/patología
3.
Sci Rep ; 13(1): 15023, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700026

RESUMEN

Immune checkpoint inhibitors (ICIs) are promising agents for treating melanoma. Given that autoimmune skin diseases exhibit hyper immune reaction, investigation of immune cells from autoimmune skin disease is crucial to validate the effectiveness of ICIs in melanoma treatment. We employed multipanel markers to predict the response to immune checkpoint inhibitors by characterizing the gene expression signatures of skin immune cells in systemic lupus erythematosus (SLE), atopic dermatitis (AD), and psoriasis (PS). By analyzing single-cell RNA sequencing data from each dataset, T cell gene signatures from autoimmune skin diseases exhibit a complex immune response in tumors that responded to immunotherapy. Based on that CD86 and CD80 provide essential costimulatory signals for T cell activation, we observed that interaction of CD86 signaling has been enhanced in the T cells of patients with SLE, AD, and PS. Our analysis revealed a common increase in CD86 signals from dendritic cells (DCs) to T cells in patients with SLE, AD, and PS, confirming that dendritic cells produce pro-inflammatory cytokines to activate T cells. Thus, we hypothesize that T cell gene signatures from autoimmune skin diseases exhibit a pro-inflammatory response and have the potential to predict cancer immunotherapy. Our study demonstrated that T cell gene signatures derived from inflammatory skin diseases, particularly SLE and PS, hold promise as potential biomarkers for predicting the response to immune checkpoint blockade therapy in patients with melanoma. Our data provide an understanding of the immune-related characteristics and differential gene expression patterns in autoimmune skin diseases, which may represent promising targets for melanoma immunotherapy.


Asunto(s)
Enfermedades Autoinmunes , Dermatitis Atópica , Lupus Eritematoso Sistémico , Melanoma , Psoriasis , Enfermedades de la Piel , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/genética , Melanoma/terapia , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/terapia , Inmunoterapia , Biomarcadores
4.
Exp Mol Med ; 55(11): 2461-2472, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37919422

RESUMEN

Despite advances in cancer therapy, the clinical outcome of patients with gastric cancer remains poor, largely due to tumor heterogeneity. Thus, finding a hidden vulnerability of clinically refractory subtypes of gastric cancer is crucial. Here, we report that chemoresistant gastric cancer cells rely heavily on endocytosis, facilitated by caveolin-1, for survival. caveolin-1 was highly upregulated in the most malignant stem-like/EMT/mesenchymal (SEM)-type gastric cancer cells, allowing caveolin-1-mediated endocytosis and utilization of extracellular proteins via lysosomal degradation. Downregulation of caveolin-1 alone was sufficient to induce cell death in SEM-type gastric cancer cells, emphasizing its importance as a survival mechanism. Consistently, chloroquine, a lysosomal inhibitor, successfully blocked caveolin-1-mediated endocytosis, leading to the marked suppression of tumor growth in chemorefractory gastric cancer cells in vitro, including patient-derived organoids, and in vivo. Together, our findings suggest that caveolin-1-mediated endocytosis is a key metabolic pathway for gastric cancer survival and a potential therapeutic target.


Asunto(s)
Caveolina 1 , Neoplasias Gástricas , Humanos , Caveolina 1/genética , Caveolina 1/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulación hacia Abajo , Endocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA